Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6492, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838698

RESUMEN

The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteinopatías TDP-43 , Ratones , Animales , Ataxina-2/genética , ARN/metabolismo , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
2.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37066174

RESUMEN

The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.

3.
Mol Ther ; 30(12): 3619-3631, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-35965414

RESUMEN

CRISPR technology has demonstrated broad utility for controlling target gene expression; however, there remains a need for strategies capable of modulating expression via the precise editing of non-coding regulatory elements. Here, we demonstrate that CRISPR base editors, a class of gene-modifying proteins capable of creating single-base substitutions in DNA, can be used to perturb gene expression via their targeted mutagenesis of cis-acting sequences. Using the promoter region of the human huntingtin (HTT) gene as an initial target, we show that editing of the binding site for the transcription factor NF-κB led to a marked reduction in HTT gene expression in base-edited cell populations. We found that these gene perturbations were persistent and specific, as a transcriptome-wide RNA analysis revealed minimal off-target effects resulting from the action of the base editor protein. We further demonstrate that this base-editing platform could influence gene expression in vivo as its delivery to a mouse model of Huntington's disease led to a potent decrease in HTT mRNA in striatal neurons. Finally, to illustrate the applicability of this concept, we target the amyloid precursor protein, showing that multiplex editing of its promoter region significantly perturbed its expression. These findings demonstrate the potential for base editors to regulate target gene expression.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Animales , Ratones
4.
Trends Biotechnol ; 39(7): 692-705, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33277043

RESUMEN

The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) nucleases has transformed biotechnology by providing an easy, efficient, and versatile platform for editing DNA. However, traditional CRISPR-based technologies initiate editing by activating DNA double-strand break (DSB) repair pathways, which can cause adverse effects in cells and restrict certain therapeutic applications of the technology. To this end, several new CRISPR-based modalities have been developed that are capable of catalyzing editing without the requirement for a DSB. Here, we review three of these technologies: base editors, prime editors, and RNA-targeting CRISPR-associated protein (Cas)13 effectors. We discuss their strengths compared to traditional gene-modifying systems, we highlight their emerging therapeutic applications, and we examine challenges facing their safe and effective clinical implementation.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Endonucleasas/genética , Humanos
5.
Mol Ther ; 28(4): 1177-1189, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-31991108

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Proteína 9 Asociada a CRISPR/metabolismo , Dependovirus/genética , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Codón sin Sentido , Modelos Animales de Enfermedad , Edición Génica , Vectores Genéticos/administración & dosificación , Células HEK293 , Humanos , Inyecciones Espinales , Inteínas , Masculino , Ratones , Ratones Transgénicos , Streptococcus pyogenes/enzimología , Trans-Empalme , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA