Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8011): 417-425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658748

RESUMEN

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Asunto(s)
Linfocitos T CD8-positivos , Proliferación Celular , Dinoprostona , Linfocitos Infiltrantes de Tumor , Neoplasias , Células Madre , Escape del Tumor , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Interleucina-2 , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/prevención & control , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/deficiencia , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Escape del Tumor/inmunología
2.
Immunity ; 56(12): 2670-2672, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091945

RESUMEN

Exhausted T cells are largely hampered by epigenetically enforced mechanisms that limit their effector potential. In this issue of Immunity, Beltra et al. found that Stat5 can alter these epigenetic profiles when T cells transition from the Tpex precursor stage into differentiated cells. At this stage, enforced Stat5 expression increases the number of intermediate exhausted T cells and induces durable effector cells with superior anti-tumor activity.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Linfocitos T/metabolismo , Factor de Transcripción STAT5/metabolismo , Diferenciación Celular
3.
Nat Immunol ; 24(11): 1792-1793, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813966

Asunto(s)
Epinefrina , Linfocitos T
4.
J Immunother Cancer ; 11(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37730271

RESUMEN

BACKGROUND: Personalized mRNA vaccines are promising new therapeutic options for patients with cancer. Because mRNA vaccines are not yet approved for first-line therapy, the vaccines are presently applied to individuals that received prior therapies that can have immunocompromising effects. There is a need to address how prior treatments impact mRNA vaccine outcomes. METHOD: Therefore, we analyzed the response to BioNTech/Pfizer's anti-SARS-CoV-2 mRNA vaccine in 237 oncology outpatients, which cover a broad spectrum of hematologic malignancies and solid tumors and a variety of treatments. Patients were stratified by the time interval between the last treatment and first vaccination and by the presence or absence of florid tumors and IgG titers and T cell responses were analyzed 14 days after the second vaccination. RESULTS: Regardless of the last treatment time point, our data indicate that vaccination responses in patients with checkpoint inhibition were comparable to healthy controls. In contrast, patients after chemotherapy or cortisone therapy did not develop an immune response until 6 months after the last systemic therapy and patients after Cht-immune checkpoint inhibitor and tyrosine kinase inhibitor therapy only after 12 months. CONCLUSION: Accordingly, our data support that timing of mRNA-based therapy is critical and we suggest that at least a 6-months or 12-months waiting interval should be observed before mRNA vaccination in systemically treated patients.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Neoplasias , Humanos , COVID-19/prevención & control , Neoplasias/tratamiento farmacológico , Vacunación , Oncología Médica
5.
Nat Immunol ; 24(4): 676-689, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914891

RESUMEN

Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos T , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Receptores de Antígenos de Linfocitos T/metabolismo , Activación de Linfocitos , Fosforilación , Fosfoproteínas/genética
6.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797499

RESUMEN

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Asunto(s)
Pirimidinas , Ciclo Celular , Diferenciación Celular
7.
Immunity ; 56(4): 813-828.e10, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36809763

RESUMEN

T cell factor 1 (Tcf-1) expressing CD8+ T cells exhibit stem-like self-renewing capacity, rendering them key for immune defense against chronic viral infection and cancer. Yet, the signals that promote the formation and maintenance of these stem-like CD8+ T cells (CD8+SL) remain poorly defined. Studying CD8+ T cell differentiation in mice with chronic viral infection, we identified the alarmin interleukin-33 (IL-33) as pivotal for the expansion and stem-like functioning of CD8+SL as well as for virus control. IL-33 receptor (ST2)-deficient CD8+ T cells exhibited biased end differentiation and premature loss of Tcf-1. ST2-deficient CD8+SL responses were restored by blockade of type I interferon signaling, suggesting that IL-33 balances IFN-I effects to control CD8+SL formation in chronic infection. IL-33 signals broadly augmented chromatin accessibility in CD8+SL and determined these cells' re-expansion potential. Our study identifies the IL-33-ST2 axis as an important CD8+SL-promoting pathway in the context of chronic viral infection.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-33 , Coriomeningitis Linfocítica , Animales , Ratones , Alarminas/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica , Ratones Endogámicos C57BL , Infección Persistente , Factor 1 de Transcripción de Linfocitos T/metabolismo
8.
Nature ; 614(7949): 762-766, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653453

RESUMEN

Differentiated somatic mammalian cells putatively exhibit species-specific division limits that impede cancer but may constrain lifespans1-3. To provide immunity, transiently stimulated CD8+ T cells undergo unusually rapid bursts of numerous cell divisions, and then form quiescent long-lived memory cells that remain poised to reproliferate following subsequent immunological challenges. Here we addressed whether T cells are intrinsically constrained by chronological or cell-division limits. We activated mouse T cells in vivo using acute heterologous prime-boost-boost vaccinations4, transferred expanded cells to new mice, and then repeated this process iteratively. Over 10 years (greatly exceeding the mouse lifespan)5 and 51 successive immunizations, T cells remained competent to respond to vaccination. Cells required sufficient rest between stimulation events. Despite demonstrating the potential to expand the starting population at least 1040-fold, cells did not show loss of proliferation control and results were not due to contamination with young cells. Persistent stimulation by chronic infections or cancer can cause T cell proliferative senescence, functional exhaustion and death6. We found that although iterative acute stimulations also induced sustained expression and epigenetic remodelling of common exhaustion markers (including PD1, which is also known as PDCD1, and TOX) in the cells, they could still proliferate, execute antimicrobial functions and form quiescent memory cells. These observations provide a model to better understand memory cell differentiation, exhaustion, cancer and ageing, and show that functionally competent T cells can retain the potential for extraordinary population expansion and longevity well beyond their organismal lifespan.


Asunto(s)
División Celular , Senescencia Celular , Longevidad , Activación de Linfocitos , Linfocitos T , Animales , Ratones , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Memoria Inmunológica , Longevidad/inmunología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T/citología , Linfocitos T/inmunología , Senescencia Celular/inmunología , Senescencia Celular/fisiología , Inmunización Secundaria , Vacunación , Traslado Adoptivo , Factores de Tiempo , Infecciones/inmunología , Enfermedad Crónica , Epigénesis Genética
10.
Sci Immunol ; 7(77): eabp9553, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36332011

RESUMEN

Resident T lymphocytes (TRM) protect tissues during pathogen reexposure. Although TRM phenotype and restricted migratory pattern are established, we have a limited understanding of their response kinetics, stability, and turnover during reinfections. Such characterizations have been restricted by the absence of in vivo fate-mapping systems. We generated two mouse models, one to stably mark CD103+ T cells (a marker of TRM cells) and the other to specifically deplete CD103- T cells. Using these models, we observed that intestinal CD103+ T cells became activated during viral or bacterial reinfection, remained organ-confined, and retained their original phenotype but failed to reexpand. Instead, the population was largely rejuvenated by CD103+ T cells formed de novo during reinfections. This pattern remained unchanged upon deletion of antigen-specific circulating T cells, indicating that the lack of expansion was not due to competition with circulating subsets. Thus, although intestinal CD103+ resident T cells survived long term without antigen, they lacked the ability of classical memory T cells to reexpand. This indicated that CD103+ T cell populations could not autonomously maintain themselves. Instead, their numbers were sustained during reinfection via de novo formation from CD103- precursors. Moreover, in contrast to CD103- cells, which require antigen plus inflammation for their activation, CD103+ TRM became fully activated follwing exposure to inflammation alone. Together, our data indicate that primary CD103+ resident memory T cells lack secondary expansion potential and require CD103- precursors for their long-term maintenance.


Asunto(s)
Coinfección , Memoria Inmunológica , Ratones , Animales , Reinfección , Linfocitos T CD8-positivos , Células T de Memoria , Inflamación
11.
Nature ; 609(7926): 354-360, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978192

RESUMEN

CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality-which is referred to as T cell exhaustion1,2-is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1- exhausted effector T cells3-6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity.


Asunto(s)
Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Proteínas Proto-Oncogénicas c-myb , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Autorrenovación de las Células , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Inmunoterapia , Selectina L/metabolismo , Células Precursoras de Linfocitos T/citología , Células Precursoras de Linfocitos T/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Virus/inmunología
12.
Nat Immunol ; 23(6): 836-847, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624209

RESUMEN

Virus-specific CD8+ T cells that differentiate in the context of resolved versus persisting infections exhibit divergent phenotypic and functional characteristics, which suggests that their differentiation trajectories are governed by distinct cellular dynamics, developmental pathways and molecular mechanisms. For acute infection, it is long known that antigen-specific T cell populations contain terminally differentiated effector T cells, known as short-lived effector T cells, and proliferation-competent and differentiation-competent memory precursor T cells. More recently, it was identified that a similar functional segregation occurs in chronic infections. A failure to generate proliferation-competent precursor cells in chronic infections and tumors results in the collapse of the T cell response. Thus, these precursor cells are major therapeutic and prophylactic targets of immune interventions. These observations suggest substantial commonality between T cell responses in acute and chronic infections but there are also critical differences. We are therefore reviewing the common features and peculiarities of precursor cells in acute infections, different types of persistent infection and cancer.


Asunto(s)
Linfocitos T CD8-positivos , Memoria Inmunológica , Diferenciación Celular
13.
Immunity ; 55(4): 656-670.e8, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35366396

RESUMEN

Reinvigoration of exhausted CD8+ T (Tex) cells by checkpoint immunotherapy depends on the activation of precursors of exhausted T (Tpex) cells, but the local anatomical context of their maintenance, differentiation, and interplay with other cells is not well understood. Here, we identified transcriptionally distinct Tpex subpopulations, mapped their differentiation trajectories via transitory cellular states toward Tex cells, and localized these cell states to specific splenic niches. Conventional dendritic cells (cDCs) were critical for successful αPD-L1 therapy and were required to mediate viral control. cDC1s were dispensable for Tpex cell expansion but provided an essential niche to promote Tpex cell maintenance, preventing their overactivation and T-cell-mediated immunopathology. Mechanistically, cDC1s insulated Tpex cells via MHC-I-dependent interactions to prevent their activation within other inflammatory environments that further aggravated their exhaustion. Our findings reveal that cDC1s maintain and safeguard Tpex cells within distinct anatomical niches to balance viral control, exhaustion, and immunopathology.


Asunto(s)
Linfocitos T CD8-positivos , Células Dendríticas , Diferenciación Celular , Inmunoterapia , Recuento de Linfocitos
14.
Nat Commun ; 13(1): 2240, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474218

RESUMEN

Cognate antigen signal controls CD8+ T cell priming, expansion size and effector versus memory cell fates, but it is not known if and how it modulates the functional features of memory CD8+ T cells. Here we show that the strength of T cell receptor (TCR) signaling controls the requirement for interleukin-2 (IL-2) signals to form a pool of memory CD8+ T cells that competitively re-expand upon secondary antigen encounter. Combining strong TCR and intact IL-2 signaling during priming synergistically induces genome-wide chromatin accessibility in regions targeting a wide breadth of biological processes, consistent with greater T cell functional fitness. Chromatin accessibility in promoters of genes encoding for stem cell, cell cycle and calcium-related proteins correlates with faster intracellular calcium accumulation, initiation of cell cycle and more robust expansion. High-dimensional flow-cytometry analysis of these T cells also highlights higher diversity of T cell subsets and phenotypes with T cells primed with stronger TCR and IL-2 stimulation than those primed with weaker strengths of TCR and/or IL-2 signals. These results formally show that epitope selection in vaccine design impacts memory CD8+ T cell epigenetic programming and function.


Asunto(s)
Fenómenos Biológicos , Interleucina-2 , Antígenos/metabolismo , Linfocitos T CD8-positivos , Calcio/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T/metabolismo
15.
Immunol Cell Biol ; 100(2): 83-86, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34989026

RESUMEN

A recent study by Gabriel et al. provides novel insight into the metabolic pathways that contribute to T cell differentiation in chronic infection. The researchers discovered that metabolic plasticity and the function of exhausted T cells is regulated via the TGF-ß-mTOR signaling axis.


Asunto(s)
Linfocitos T CD8-positivos , Diferenciación Celular , Activación de Linfocitos
16.
Nat Commun ; 13(1): 153, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013191

RESUMEN

Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.


Asunto(s)
Vacuna BNT162/inmunología , COVID-19/inmunología , Convalecencia , Nucleocápside/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/virología , Citocinas/inmunología , Citocinas/metabolismo , Citometría de Flujo/métodos , Estudios de Seguimiento , Humanos , Inmunoglobulina G/inmunología , Interleucina-2/inmunología , Interleucina-2/metabolismo , Cinética , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Factores de Tiempo , Vacunación/métodos
17.
Front Immunol ; 12: 698420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497606

RESUMEN

Siglec-H is a DAP12-associated receptor on plasmacytoid dendritic cells (pDCs) and microglia. Siglec-H inhibits TLR9-induced IFN-α production by pDCs. Previously, it was found that Siglec-H-deficient mice develop a lupus-like severe autoimmune disease after persistent murine cytomegalovirus (mCMV) infection. This was due to enhanced type I interferon responses, including IFN-α. Here we examined, whether other virus infections can also induce autoimmunity in Siglec-H-deficient mice. To this end we infected Siglec-H-deficient mice with influenza virus or with Lymphocytic Choriomeningitis virus (LCMV) clone 13. With both types of viruses we did not observe induction of autoimmune disease in Siglec-H-deficient mice. This can be explained by the fact that both types of viruses are ssRNA viruses that engage TLR7, rather than TLR9. Also, Influenza causes an acute infection that is rapidly cleared and the chronicity of LCMV clone 13 may not be sufficient and may rather suppress pDC functions. Siglec-H inhibited exclusively TLR-9 driven type I interferon responses, but did not affect type II or type III interferon production by pDCs. Siglec-H-deficient pDCs showed impaired Hck expression, which is a Src-family kinase expressed in myeloid cells, and downmodulation of the chemokine receptor CCR9, that has important functions for pDCs. Accordingly, Siglec-H-deficient pDCs showed impaired migration towards the CCR9 ligand CCL25. Furthermore, autoimmune-related genes such as Klk1 and DNase1l3 are downregulated in Siglec-H-deficient pDCs as well. From these findings we conclude that Siglec-H controls TLR-9-dependent, but not TLR-7 dependent inflammatory responses after virus infections and regulates chemokine responsiveness of pDCs.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Enfermedades Autoinmunes/inmunología , Interferón Tipo I/inmunología , Lectinas/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Superficie Celular/inmunología , Animales , Enfermedades Autoinmunes/virología , Autoinmunidad/inmunología , Quimiotaxis de Leucocito/inmunología , Células Dendríticas/inmunología , Subtipo H3N2 del Virus de la Influenza A , Lectinas/deficiencia , Virus de la Coriomeningitis Linfocítica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Superficie Celular/deficiencia , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo
18.
Cancer Cell ; 39(7): 885-888, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34256903

RESUMEN

CAR T cell therapy successes are challenged by several mechanisms of resistance including the development of dysfunctional states such as exhaustion. The features of CAR T cell exhaustion, its role in limiting the efficacy of CAR T therapy in both liquid and solid malignancies, and potential strategies to overcome it are discussed.


Asunto(s)
Resistencia a Antineoplásicos , Inmunoterapia Adoptiva/normas , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/inmunología , Microambiente Tumoral
19.
J Immunol ; 206(12): 2937-2948, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34088770

RESUMEN

Tissue-resident memory CD8 T cells (CD8 TRM) are critical for maintaining barrier immunity. CD8 TRM have been mainly studied in the skin, lung and gut, with recent studies suggesting that the signals that control tissue residence and phenotype are highly tissue dependent. We examined the T cell compartment in healthy human cervicovaginal tissue (CVT) and found that most CD8 T cells were granzyme B+ and TCF-1- To address if this phenotype is driven by CVT tissue residence, we used a mouse model to control for environmental factors. Using localized and systemic infection models, we found that CD8 TRM in the mouse CVT gradually acquired a granzyme B+, TCF-1- phenotype as seen in human CVT. In contrast to CD8 TRM in the gut, these CD8 TRM were not stably maintained regardless of the initial infection route, which led to reductions in local immunity. Our data show that residence in the CVT is sufficient to progressively shape the size and function of its CD8 TRM compartment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Cuello del Útero/inmunología , Herpes Simple/inmunología , Vagina/inmunología , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Cuello del Útero/efectos de los fármacos , Cuello del Útero/virología , Femenino , Herpes Simple/tratamiento farmacológico , Herpes Simple/virología , Herpesvirus Humano 2/efectos de los fármacos , Herpesvirus Humano 2/inmunología , Humanos , Inyecciones Subcutáneas , Acetato de Medroxiprogesterona/administración & dosificación , Acetato de Medroxiprogesterona/farmacología , Ratones , Ratones Endogámicos C57BL , Vagina/efectos de los fármacos , Vagina/virología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...