Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
JIMD Rep ; 65(2): 49-55, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444578

RESUMEN

Two siblings, presenting with a neurometabolic phenotype, were identified with 5, 10-methenyltetrahydrofolate synthetase (MTHFS) deficiency. Whole genome sequencing in both patients demonstrated an homozygous MTHFS variant NM_006441.3(MTHFS):c.434G > A, p.Arg145Gin, which has been described before. At baseline, both patients showed moderate hyperhomocysteinemia, decreased 5-methyltetrahydrofolate (5MTHF), and increased 5-formyltetrahydrofolate (5-FTHF) in whole blood. In CSF, 5MTHF levels were in the low-normal range and 5-FTHF was strongly increased. In our novel enzyme assay, MTHFS activity was deficient in cultured fibroblasts in both sisters. Oral treatment was initiated with escalating dose of 5-methyltetrahydrofolate (5MTHF) up to 12 mg and hydroxycobalamin 5 mg daily. Plasma homocysteine normalized and 5MTHF became elevated in the blood of both patients. The elevated 5FTHF levels increased further on treatment in blood and CSF. This regimen resulted in some clinical improvement of patient 1. In patient 2, the clinical benefits of 5MTHF supplementation were less obvious. It seems plausible that the alleviation of the deficient 5MTHF levels and normalization of homocysteine in blood are of some clinical benefit. On the other hand, the very high levels of 5FTHF may well be detrimental and may prompt us to decrease the dose of 5MTHF. In addition, we hypothesize that the crippled MTHFS enzyme may destabilize the purinosome, which is presumably not ameliorated by 5MTHF.

2.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37531237

RESUMEN

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Proteína Fosfatasa 1/genética , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Glucosa , Glucógeno , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/complicaciones
3.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37501353

RESUMEN

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Epilepsia Generalizada , Discapacidad Intelectual , Anomalías Dentarias , Humanos , Lactante , Anomalías Múltiples/etiología , Anomalías Múltiples/genética , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/diagnóstico , Enfermedades del Desarrollo Óseo/etiología , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/etiología , Anomalías Dentarias/genética , Facies , Proteínas Represoras/genética , Factores de Transcripción
4.
Am J Hum Genet ; 110(5): 809-825, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37075751

RESUMEN

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.


Asunto(s)
Anomalías Craneofaciales , Disostosis Mandibulofacial , Humanos , Ratones , Animales , Disostosis Mandibulofacial/genética , Apoptosis , Mutagénesis , Ribosomas/genética , Fenotipo , Cresta Neural/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología
5.
Transl Psychiatry ; 12(1): 421, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182950

RESUMEN

CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype-phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26-28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Megalencefalia , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Proteínas de Unión al ADN/genética , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Fenotipo , Factores de Transcripción/genética
6.
Nat Commun ; 13(1): 1822, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383156

RESUMEN

Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.


Asunto(s)
Epilepsia , Mutación con Ganancia de Función , Mutación con Pérdida de Función , Receptores de GABA-A , Epilepsia/genética , Humanos , Fenotipo , Receptores de GABA-A/genética , Convulsiones
7.
Gene ; 768: 145298, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33181255

RESUMEN

Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability and autism spectrum disorders. Mostly, FXS is caused by transcriptional silencing of the FMR1 gene due to a repeat expansion in the 5' UTR, and consequently lack of the protein product FMRP. However, in rare cases FXS is caused by other types of variants in the FMR1 gene. We describe a missense variant in the FMR1 gene, identified through whole-exome sequencing, in a boy with intellectual disability and behavioral problems. The variant is located in the FMRP's nuclear export signal (NES). We performed expression and localization studies of the variant in hair roots and HEK293 cells. Our results show normal expression but significant retention of the FMRP in the cells' nucleus. This finding suggests a possible FMRP reduction at its essential functional sites in the dendrites and the synaptic compartments and possible interference of other cellular processes in the nucleus. Together, this might lead to a FXS phenotype in the boy.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Señales de Exportación Nuclear/genética , Regiones no Traducidas 5'/genética , Línea Celular , Femenino , Síndrome del Cromosoma X Frágil/genética , Células HEK293 , Humanos , Masculino , Fenotipo , Secuenciación del Exoma/métodos
8.
Brain Behav ; 8(6): e00991, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29785777

RESUMEN

INTRODUCTION: Fragile X syndrome (FXS) is a common monogenetic cause of intellectual disability, autism spectrum features, and a broad range of other psychiatric and medical problems. FXS is caused by the lack of the fragile X mental retardation protein (FMRP), a translational regulator of specific mRNAs at the postsynaptic compartment. The absence of FMRP leads to aberrant synaptic plasticity, which is believed to be caused by an imbalance in excitatory and inhibitory network functioning of the synapse. Evidence from studies in mice demonstrates that GABA, the major inhibitory neurotransmitter in the brain, and its receptors, is involved in the pathogenesis of FXS. Moreover, several FXS phenotypes, including social behavior deficits, could be corrected in Fmr1 KO mice after acute treatment with GABAB agonists. METHODS: As FXS would probably require a lifelong treatment, we investigated the effect of chronic treatment with the GABAB agonist baclofen on social behavior in Fmr1 KO mice on two behavioral paradigms for social behavior: the automated tube test and the three-chamber sociability test. RESULTS: Unexpectedly, chronic baclofen treatment resulted in worsening of the FXS phenotypes in these behavior tests. Strikingly, baclofen treatment also affected wild-type animals in both behavioral tests, inducing a phenotype similar to that of untreated Fmr1 KO mice. CONCLUSION: Altogether, the disappointing results of recent clinical trials with the R-baclofen enantiomer arbaclofen and our current results indicate that baclofen should be reconsidered and further evaluated before its application in targeted treatment for FXS.


Asunto(s)
Baclofeno/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Agonistas de Receptores GABA-B/farmacología , Conducta Social , Animales , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pruebas Neuropsicológicas , ARN Mensajero/metabolismo , Sinapsis/efectos de los fármacos
9.
Eur J Hum Genet ; 26(4): 552-560, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29374277

RESUMEN

Intellectual disability (ID) comprises a large group of heterogeneous disorders, often without a known molecular cause. X-linked ID accounts for 5-10% of male ID cases. We investigated a large, three-generation family with mild ID and behavior problems in five males and one female, with a segregation suggestive for X-linked inheritance. Linkage analysis mapped a disease locus to a 7.6 Mb candidate region on the X-chromosome (LOD score 3.3). Whole-genome sequencing identified a 2 bp insertion in exon 2 of the chromosome X open reading frame 56 gene (CXorf56), resulting in a premature stop codon. This insertion was present in all intellectually impaired individuals and carrier females. Additionally, X-inactivation status showed skewed methylation patterns favoring the inactivation of the mutated allele in the unaffected carrier females. We demonstrate that the insertion leads to nonsense-mediated decay and that CXorf56 mRNA expression is reduced in the impaired males and female. In murine brain slices and primary hippocampal neuronal cultures, CXorf56 protein was present and localized in the nucleus, cell soma, dendrites, and dendritic spines. Although no other families have been identified with pathogenic variants in CXorf56, these results suggest that CXorf56 is the causative gene in this family, and thus a novel candidate gene for X-linked ID with behavior problems.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Animales , Células Cultivadas , Codón de Terminación/genética , Metilación de ADN , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Nucleares
10.
Front Mol Neurosci ; 10: 368, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163043

RESUMEN

Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability and autism. The disorder is characterized by altered synaptic plasticity in the brain. Synaptic plasticity is tightly regulated by a complex balance of different synaptic pathways. In FXS, various synaptic pathways are disrupted, including the excitatory metabotropic glutamate receptor 5 (mGluR5) and the inhibitory γ-aminobutyric acid (GABA) pathways. Targeting each of these pathways individually, has demonstrated beneficial effects in animal models, but not in patients with FXS. This lack of translation might be due to oversimplification of the disease mechanisms when targeting only one affected pathway, in spite of the complexity of the many pathways implicated in FXS. In this report we outline the hypothesis that targeting more than one pathway simultaneously, a combination therapy, might improve treatment effects in FXS. In addition, we present a glance of the first results of chronic combination therapy on social behavior in Fmr1 KO mice. In contrast to what we expected, targeting both the mGluR5 and the GABAergic pathways simultaneously did not result in a synergistic effect, but in a slight worsening of the social behavior phenotype. This does implicate that both pathways are interconnected and important for social behavior. Our results underline the tremendous fine-tuning that is needed to reach the excitatory-inhibitory balance in the synapse in relation to social behavior. We believe that alternative strategies focused on combination therapy should be further explored, including targeting pathways in different cellular compartments or cell-types.

11.
Neuropharmacology ; 116: 71-81, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28012946

RESUMEN

Many clinical and molecular features of the fragile X syndrome, a common form of intellectual disability and autism, can be modeled by deletion of the Fmr1 protein (Fmrp) in mice. Previous studies showed a decreased expression of several components of the GABAergic system in Fmr1 knockout mice. Here, we used this mouse model to investigate the functional consequences of Fmrp deletion on hippocampal GABAergic inhibition in the CA1-region of the hippocampus. Whole-cell patch-clamp recordings demonstrated a significantly reduced amplitude of evoked inhibitory postsynaptic currents (eIPSCs) and a decrease in the amplitude and frequency of spontaneous IPSCs. In addition, miniature IPSCs were reduced in amplitude and frequency and decayed significantly slower than mIPSCs in controls. Quantitative real-time PCR revealed a significantly lower expression of α2, ß1 and δ GABAA receptor subunits in the hippocampus of the juvenile mice (P22) compared to wild-type littermates. Correspondingly, we found also at the protein level reduced amounts of α2, ß1 and δ subunits in Fmr1 knockout mice. Overall, these results demonstrate that the reduction in several components of the GABAergic system is already present at young age and that this reduction results in measurable abnormalities on GABAA receptor-mediated phasic inhibition. These abnormalities might contribute to the behavioral and cognitive deficits of this fragile X mouse model.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Células Piramidales/metabolismo , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Antagonistas de Receptores de GABA-A/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , ARN Mensajero/metabolismo , Técnicas de Cultivo de Tejidos
12.
Expert Opin Ther Targets ; 19(10): 1277-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26294013

RESUMEN

Fragile X syndrome (FXS) is the most common, monogenetic cause of intellectual disability and autism-spectrum disorders. Although there is no effective therapy, greater understanding of disturbed neuronal pathways has introduced options for targeted therapy. But whereas many FXS phenotypes were improved in preclinical studies with drugs targeting these pathways in the FXS mouse model, attempts to translate these animal-model success stories into treatment of patients in clinical trials have been extremely disappointing. Complicating factors, particularly in animal studies, include mouse inbred strains, variability in functional studies between laboratories, publication bias and lack of reliable and objective primary outcome measures in both mice and patients. Possibly most important, however, is one factor that has been little explored: the complexity of the molecular imbalance in FXS and the need to simultaneously target several different disturbed pathways and different cellular compartments. New, well-conceived animal studies should generate more productive approaches in the quest for targeted therapy for FXS.


Asunto(s)
Diseño de Fármacos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Terapia Molecular Dirigida , Animales , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Humanos , Ratones , Fenotipo
13.
Neurosci Biobehav Rev ; 46 Pt 2: 256-69, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24184744

RESUMEN

Fragile X syndrome (FXS) occurs in less than 10% of the intellectually disabled (ID) population. The cause of FXS is a CGG trinucleotide repeat longer than 200 CGG units within the first exon of the FMR1 gene, which leads to hypermethylation and consequently silencing of the FMR1 gene. The lack of FMR1's gene product, the fragile X mental retardation protein (FMRP) in neurons is the cause of the ID in patients with FXS. FMRP plays an important role in local protein synthesis at the synapse including modulation of synaptic plasticity. The advancing knowledge about the cellular function of FMRP has led to the identification of translational endpoints for future therapeutic intervention strategies. This review highlights the challenging routes to the identification of reliable outcome measures in preclinical studies using both cellular models and Fmr1 knockout mice. Finally, clinical studies carried out to correct intellectual and behavioral deficits in patients with FXS, using a variety of existing and new drugs, are discussed.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Terapia Molecular Dirigida , Plasticidad Neuronal/genética , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/diagnóstico , Humanos , Ratones Noqueados , Modelos Neurológicos , Neuronas/metabolismo , Nootrópicos/uso terapéutico , Evaluación de Resultado en la Atención de Salud
14.
Crit Care Med ; 39(6): 1313-21, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21358397

RESUMEN

OBJECTIVE: Cross-transmission of Gram-negative bacteria increases the likelihood of acquisition of infections and emergence of antibiotic resistance in intensive care units. Respiratory tracts of mechanically ventilated patients are frequently colonized with Gram-negative bacteria and endotracheal suctioning may facilitate cross-transmission. It is unknown whether closed suction systems, as compared with open suction systems, prevent cross-transmission. The objective was to determine whether closed suction systems, as compared with open suction systems, reduce the incidence of cross-transmission of Gram-negative bacteria in intensive care units. DESIGN: We performed a prospective crossover study in which both systems were tested unitwide in four intensive care units. SETTING: Two intensive care units from a university hospital and two from a teaching hospital participated in the trial between January 2007 and February 2008. PATIENTS: All patients admitted to the intensive care unit for >24 hrs were included. INTERVENTION: Closed suction systems and open suction systems were used for all patients requiring mechanical ventilation during 6-month clusters with the order of systems randomized per intensive care unit. MEASUREMENTS AND MAIN RESULTS: Acquisition and cross-transmission rates of selected Gram-negative bacteria were determined through extensive microbiological surveillance and genotyping. Among 1,110 patients (585 with closed suction systems and 525 with open suction systems), acquisition for selected Gram-negative bacteria was 35.5 and 32.5 per 1,000 patient-days at risk during closed suction period and open suction period, respectively (adjusted hazard ratio, 1.14; 95% confidence interval, 0.9-1.4). During closed suction period, adjusted hazard ratios for acquisition were 0.66 (95% confidence interval, 0.45-0.97) for Pseudomonas aeruginosa and 2.03 (95% confidence interval, 1.15-3.57) for Acinetobacter species; acquisition rates of other pathogens did not differ significantly. Adjusted hazard ratios for cross-transmission during closed suction period 0.9 (0.4-1.9) for P. aeruginosa, 6.7 (1.5-30.1) for Acinetobacter, and 0.3 (0.03-2.7) for Enterobacter species. Overall cross-transmission rates were 5.9 (closed suction systems) and 4.7 (open suction systems) per 1,000 patient-days at risk. CONCLUSION: Closed suction systems failed to reduce cross-transmission and acquisition rates of the most relevant Gram-negative bacteria in intensive care unit patients.


Asunto(s)
Infección Hospitalaria/prevención & control , Infección Hospitalaria/transmisión , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/transmisión , Intubación Intratraqueal/instrumentación , Succión/métodos , Anciano , Estudios Cruzados , Femenino , Humanos , Intubación Intratraqueal/efectos adversos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Respiración Artificial/efectos adversos , Respiración Artificial/instrumentación , Tráquea/microbiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...