Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 187: 106485, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270149

RESUMEN

Acute respiratory distress syndrome (ARDS) is a severe lung condition with high mortality and various causes, including lung infection. No specific treatment is currently available and more research aimed at better understanding the pathophysiology of ARDS is needed. Most lung-on-chip models that aim at mimicking the air-blood barrier are designed with a horizontal barrier through which immune cells can migrate vertically, making it challenging to visualize and investigate their migration. In addition, these models often lack a barrier of natural protein-derived extracellular matrix (ECM) suitable for live cell imaging to investigate ECM-dependent migration of immune cells as seen in ARDS. This study reports a novel inflammation-on-chip model with live cell imaging of immune cell extravasation and migration during lung inflammation. The three-channel perfusable inflammation-on-chip system mimics the lung endothelial barrier, the ECM environment and the (inflamed) lung epithelial barrier. A chemotactic gradient was established across the ECM hydrogel, leading to the migration of immune cells through the endothelial barrier. We found that immune cell extravasation depends on the presence of an endothelial barrier, on the ECM density and stiffness, and on the flow profile. In particular, bidirectional flow, broadly used in association with rocking platforms, was found to significantly delay extravasation of immune cells in contrast to unidirectional flow. Extravasation was increased in the presence of lung epithelial tissue. This model is currently used to study inflammation-induced immune cell migration but can be used to study infection-induced immune cell migration under different conditions, such as ECM composition, density and stiffness, type of infectious agents used, and the presence of organ-specific cell types.


Asunto(s)
Neumonía , Síndrome de Dificultad Respiratoria , Humanos , Pulmón/metabolismo , Inflamación/metabolismo , Movimiento Celular
2.
Adv Exp Med Biol ; 1413: 191-211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195532

RESUMEN

Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.


Asunto(s)
Pulmón , Alveolos Pulmonares , Matriz Extracelular , Dispositivos Laboratorio en un Chip
3.
iScience ; 26(3): 106198, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36879808

RESUMEN

The endothelium of blood vessels is a vital organ that reacts differently to subtle changes in stiffness and mechanical forces exerted on its environment (extracellular matrix (ECM)). Upon alteration of these biomechanical cues, endothelial cells initiate signaling pathways that govern vascular remodeling. The emerging organs-on-chip technologies allow the mimicking of complex microvasculature networks, identifying the combined or singular effects of these biomechanical or biochemical stimuli. Here, we present a microvasculature-on-chip model to investigate the singular effect of ECM stiffness and mechanical cyclic stretch on vascular development. Following two different approaches for vascular growth, the effect of ECM stiffness on sprouting angiogenesis and the effect of cyclic stretch on endothelial vasculogenesis are studied. Our results indicate that ECM hydrogel stiffness controls the size of the patterned vasculature and the density of sprouting angiogenesis. RNA sequencing shows that the cellular response to stretching is characterized by the upregulation of certain genes such as ANGPTL4+5, PDE1A, and PLEC.

4.
APL Bioeng ; 5(2): 026102, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33834157

RESUMEN

In the lungs, vascular endothelial cells experience cyclic mechanical strain resulting from rhythmic breathing motions and intraluminal blood pressure. Mechanical stress creates evident physiological, morphological, biochemical, and gene expression changes in vascular endothelial cells. However, the exact mechanisms of the mechanical signal transduction into biological responses remain to be clarified. Besides, the level of mechanical stress is difficult to determine due to the complexity of the local distension patterns in the lungs and thus assumed to be the same as the one acting on the alveolar epithelium. Existing in vitro models used to investigate the effect of mechanical stretch on endothelial cells are usually limited to two-dimensional (2D) cell culture platforms, which poorly mimic the typical three-dimensional structure of the vessels. Therefore, the development of an advanced in vitro vasculature model that closely mimics the dynamic of the human lung vasculatures is highly needed. Here, we present the first study that investigates the interplay of the three-dimensional (3D) mechanical cyclic stretch and its magnitude with vascular endothelial growth factor (VEGF) stimulation on a 3D perfusable vasculature in vitro. We studied the effects of the cyclic strain on a perfusable 3D vasculature, made of either human lung microvascular endothelial cells or human umbilical vein endothelial cells embedded in a gel layer. The in vitro 3D vessels underwent both in vivo-like longitudinal and circumferential deformations, simultaneously. Our results showed that the responses of the human lung microvascular endothelial cells and human umbilical vein endothelial cells to cyclic stretch were in good agreement. Although our 3D model was in agreement with the 2D model in predicting a cytoskeletal remodeling in response to different magnitudes of cyclic stretch, however, we observed several phenomena in the 3D model that the 2D model was unable to predict. Angiogenic sprouting induced by VEGF decreased significantly in the presence of cyclic stretch. Similarly, while treatment with VEGF increased vascular permeability, the cyclic stretch restored vascular barrier tightness and significantly decreased vascular permeability. One of the major findings of this study was that a 3D microvasculature can be exposed to a much higher mechanical cyclic stress level than reported in the literature without any dysfunction of its barrier. For higher magnitudes of the cyclic stretch, the applied longitudinal strain level was 14% and the associated circumferential strain reached the equivalent of 63%. In sharp contrast to our findings, such strain typically leads to the disruption of the endothelial barrier in a 2D stretching assay and is considered pathological. This highlights the importance of 3D modeling to investigate mechanobiology effects rather than using a simple endothelial monolayer, which truly recapitulates the in vivo situation.

5.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L813-L830, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073879

RESUMEN

Our understanding of mesenchymal cell subsets and their function in human lung affected by aging and in certain disease settings remains poorly described. We use a combination of flow cytometry, prospective cell-sorting strategies, confocal imaging, and modeling of microvessel formation using advanced microfluidic chip technology to characterize mesenchymal cell subtypes in human postnatal and adult lung. Tissue was obtained from patients undergoing elective surgery for congenital pulmonary airway malformations (CPAM) and other airway abnormalities including chronic obstructive pulmonary disease (COPD). In microscopically normal postnatal human lung, there was a fivefold higher mesenchymal compared with epithelial (EpCAM+) fraction, which diminished with age. The mesenchymal fraction composed of CD90+ and CD90+CD73+ cells was enriched in CXCL12 and platelet-derived growth factor receptor-α (PDGFRα) and located in close proximity to EpCAM+ cells in the alveolar region. Surprisingly, alveolar organoids generated from EpCAM+ cells supported by CD90+ subset were immature and displayed dysplastic features. In congenital lung lesions, cystic air spaces and dysplastic alveolar regions were marked with an underlying thick interstitium composed of CD90+ and CD90+PDGFRα+ cells. In postnatal lung, a subset of CD90+ cells coexpresses the pericyte marker CD146 and supports self-assembly of perfusable microvessels. CD90+CD146+ cells from COPD patients fail to support microvessel formation due to fibrinolysis. Targeting the plasmin-plasminogen system during microvessel self-assembly prevented fibrin gel degradation, but microvessels were narrower and excessive contraction blocked perfusion. These data provide important new information regarding the immunophenotypic identity of key mesenchymal lineages and their change in a diverse setting of congenital lung lesions and COPD.


Asunto(s)
Inmunomodulación/inmunología , Células Madre Mesenquimatosas/metabolismo , Antígenos Thy-1/inmunología , Antígenos Thy-1/metabolismo , Adolescente , Biomarcadores/metabolismo , Antígeno CD146/inmunología , Antígeno CD146/metabolismo , Separación Celular/métodos , Niño , Preescolar , Molécula de Adhesión Celular Epitelial/inmunología , Molécula de Adhesión Celular Epitelial/metabolismo , Femenino , Humanos , Factores Inmunológicos/inmunología , Factores Inmunológicos/metabolismo , Lactante , Recién Nacido , Masculino , Células Madre Mesenquimatosas/inmunología , Microvasos/inmunología , Microvasos/metabolismo , Pericitos/inmunología , Pericitos/metabolismo , Estudios Prospectivos
6.
Angiogenesis ; 21(4): 861-871, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29967964

RESUMEN

Idiopathic pulmonary fibrosis is characterized by a progressive scarring and stiffening of the peripheral lung tissue that decreases lung function. Over the course of the disease, the lung microvasculature undergoes extensive remodeling. There is increased angiogenesis around fibrotic foci and an absence of microvessels within the foci. To elucidate how the anti-fibrotic drug nintedanib acts on vascular remodeling, we used an in vitro model of perfusable microvessels made with primary endothelial cells and primary lung fibroblasts in a microfluidic chip. The microvasculature model allowed us to study the impact of nintedanib on permeability, vascularized area, and cell-cell interactions. The anti-vasculogenic impact of nintedanib was visible at the minimal concentrations of 10 nM, showing a significant increase in vessel permeability. Furthermore, nintedanib decreased microvessel density, diameter, and influenced fibroblast organization around endothelial microvessels. These results show that nintedanib acts on the endothelial network formation and endothelial-perivascular interactions. Advanced in vitro microvasculature models may thus serve to pinpoint the mechanistic effect of anti-fibrotic drugs on the microvascular remodeling in 3D and refine findings from animal studies.


Asunto(s)
Fibroblastos , Fibrosis Pulmonar Idiopática , Indoles/farmacología , Pulmón , Microvasos , Remodelación Vascular/efectos de los fármacos , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Fibroblastos/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Dispositivos Laboratorio en un Chip , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Microvasos/metabolismo , Microvasos/patología
7.
Electrophoresis ; 36(13): 1432-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25808433

RESUMEN

Microfluidics is the combination of micro/nano fabrication techniques with fluid flow at microscale to pursue powerful techniques in controlling and manipulating chemical and biological processes. Sorting and separation of bio-particles are highly considered in diagnostics and biological analyses. Dielectrophoresis (DEP) has offered unique advantages for microfluidic devices. In DEP devices, asymmetric pair of planar electrodes could be employed to generate non-uniform electric fields. In DEP applications, facing 3D sidewall electrodes is considered to be one of the key solutions to increase device throughput due to the generated homogeneous electric fields along the height of microchannels. Despite the advantages, fabrication of 3D vertical electrodes requires a considerable challenge. In this study, two alternative fabrication techniques have been proposed for the fabrication of a microfluidic device with 3D sidewall electrodes. In the first method, both the mold and the electrodes are fabricated using high precision machining. In the second method, the mold with tilted sidewalls is fabricated using high precision machining and the electrodes are deposited on the sidewall using sputtering together with a shadow mask fabricated by electric discharge machining. Both fabrication processes are assessed as highly repeatable and robust. Moreover, the two methods are found to be complementary with respect to the channel height. Only the manipulation of particles with negative-DEP is demonstrated in the experiments, and the throughput values up to 105 particles / min is reached in a continuous flow. The experimental results are compared with the simulation results and the limitations on the fabrication techniques are also discussed.


Asunto(s)
Electroforesis/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Microtecnología/métodos , Electrodos , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...