Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(9): e20250, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810086

RESUMEN

Background: The Opportunity Atlas project is a pioneering effort to trace social mobility and adulthood socioeconomic outcomes back to childhood residence. Half of the variation in adulthood socioeconomic outcomes was explainable by neighborhood-level socioeconomic characteristics during childhood. Clustering census tracts by Opportunity Atlas characteristics would allow for further exploration of variance in social mobility. Our objectives here are to identify and describe spatial clustering trends within Opportunity Atlas outcomes. Methods: We utilized a k-means clustering machine learning approach with four outcome variables (individual income, incarceration rate, employment, and percent of residents living in a neighborhood with low levels of poverty) each given at five parental income levels (1st, 25th, 50th, 75th, and 100th percentiles of the national distribution) to create clusters of census tracts across the contiguous United States (US) and within each Environmental Protection Agency region. Results: At the national level, the algorithm identified seven distinct clusters; the highest opportunity clusters occurred in the Northern Midwest and Northeast, and the lowest opportunity clusters occurred in rural areas of the Southwest and Southeast. For regional analyses, we identified between five to nine clusters within each region. PCA loadings fluctuate across parental income levels; income and low poverty neighborhood residence explain a substantial amount of variance across all variables, but there are differences in contributions across parental income levels for many components. Conclusions: Using data from the Opportunity Atlas, we have taken four social mobility opportunity outcome variables each stratified at five parental income levels and created nationwide and EPA region-specific clusters that group together census tracts with similar opportunity profiles. The development of clusters that can serve as a combined index of social mobility opportunity is an important contribution of this work, and this in turn can be employed in future investigations of factors associated with children's social mobility.

2.
Sci Total Environ ; 898: 165522, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37459995

RESUMEN

BACKGROUND AND AIM: Infant mortality is a widely reported indicator of population health and a leading public health concern. In this systematic review and meta-analysis, we review the available literature for epidemiologic evidence of the association between short-term air pollution exposure and infant mortality. METHODS: Relevant publications were identified through PubMed and Web of Science databases using comprehensive search terms and screened using predefined inclusion/exclusion criteria. We extracted data from included studies and applied a systematic rubric for evaluating study quality across domains including participant selection, outcome, exposure, confounding, analysis, selective reporting, sensitivity, and overall quality. We performed meta-analyses, using both fixed and random-effect methods, and estimated pooled odds ratios (ORs) and 95 % confidence intervals (95%CI) for pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), ozone (O3), carbon monoxide (CO)) and infant mortality, neonatal mortality, or postneonatal mortality. RESULTS: Our search returned 549 studies. We excluded 490 studies in the abstract screening phase and an additional 37 studies in the full text screening phase, leaving 22 studies for inclusion. Among these 22 studies, 14 included effect estimates for PM10, 13 for O3, 11 for both NO2 and CO, 8 for SO2, and 3 for PM2.5. We did not calculate a pooled OR for PM2.5 due to the limited number of studies available and demonstrated heterogeneity in the effect estimates. The pooled ORs (95%CI) with the greatest magnitudes were for a 10-ppb increase in SO2 or NO2 concentration in the days before death (1.07 [95%CI: 1.02, 1.12], 1.04 [95%CI: 1.01, 1.08], respectively). The pooled OR for PM10 was 1.02 (95%CI: 1.00, 1.03), and the pooled ORs for CO and O3 were 1.01 (95%CI: 1.00, 1.02) and 0.99 (95%CI: 0.97, 1.01). CONCLUSIONS: Increased exposure to SO2, NO2, PM10, or CO is associated with infant mortality across studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Lactante , Recién Nacido , Humanos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Ozono/efectos adversos , Ozono/análisis , Mortalidad Infantil , Dióxido de Azufre/análisis
3.
Prev Med ; 164: 107306, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244521

RESUMEN

Air pollution exposure is associated with negative health consequences among children and adolescents. Physical activity is recommended for all children/adolescents due to benefits to health and development. However, it is unclear if physically active children have additional protective benefits when exposed to higher levels of air pollution, compared to less active children. This systematic review evaluates all available literature since 2000 and examines if effect measure modification (EMM) exists between air pollution exposure and health outcomes among children/adolescents partaking in regular physical activity. PubMed, Science Direct, Scopus, Web of Science, and ProQuest Agricultural & Environmental Science databases were queried, identifying 2686 articles. Title/abstract screening and full-text review eliminated 2620 articles, and 56 articles were removed for evaluating individuals >21, leaving 10 articles for review. Of the included articles, half were conducted in China, three in the United States, and one each in Indonesia and Germany. Seven articles identified EMM between active children and air-pollution related health outcomes. Five of these indicated that children/adolescents do not experience any additional benefits from being physically active in higher levels of air pollution, with some studies implying active children may experience additional detriments, compared to less active children. However, the remaining two EMM studies highlighted modest benefits of having a higher activity level, even in polluted air. Overall, active children/adolescents may be at greater risk from air pollution exposure, but results were not consistent across all studies. Future studies assessing the intersection between air pollution and regular physical activity among children would be useful.


Asunto(s)
Contaminación del Aire , Exposición a Riesgos Ambientales , Niño , Adolescente , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Ejercicio Físico , China , Alemania , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...