Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
EBioMedicine ; 103: 105127, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677183

RESUMEN

BACKGROUND: Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS: We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS: We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION: These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING: Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.

2.
Biochem Pharmacol ; : 116237, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679211

RESUMEN

Cytochromes P450 can metabolize endogenous fatty acids, such as arachidonic acid, to bioactive lipids such as epoxyeicosatrienoic acids (EETs) that have beneficial effects. EETs protect hearts against ischemic damage, heart failure or fibrosis; however, their effects are limited by hydrolysis to less active dihydroxy oxylipins by soluble epoxide hydrolase (sEH), encoded by the epoxide hydrolase 2 gene (EPHX2, EC 3.3.2.10). Pharmacological inhibition or genetic disruption of sEH/EPHX2 have been widely studied for their impact on cardiovascular diseases. Less well studied is the role of increased EPHX2 expression, which occurs in a substantial human population that carries the EPHX2 K55R polymorphism or after induction by inflammatory stimuli. Herein, we developed a mouse model with cardiomyocyte-selective expression of human EPHX2 (Myh6-EPHX2) that has significantly increased total EPHX2 expression and activity. Myh6-EPHX2 hearts exhibit strong, cardiomyocyte-selective expression of EPHX2. EPHX2 mRNA, protein, and epoxide hydrolysis measurements suggest that Myh6-EPHX2 hearts have 12-fold increase in epoxide hydrolase activity relative to wild type (WT) hearts. This increased activity significantly decreased epoxide:diol ratios in vivo. Isolated, perfused Myh6-EPHX2 hearts were not significantly different from WT hearts in basal parameters of cardiac function; however, compared to WT hearts, Myh6-EPHX2 hearts demonstrated reduced recovery of heart contractile function after ischemia and reperfusion (I/R). This impaired recovery after I/R correlated with reduced activation of PI3K/AKT and GSK3ß signaling pathways in Myh6-EPHX2 hearts compared to WT hearts. In summary, the Myh6-EPHX2 mouse line represents a novel model of cardiomyocyte-selective overexpression of EPHX2 that has detrimental effects on cardiac function.

3.
bioRxiv ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38463975

RESUMEN

Previous studies have implicated persistent innate immune signaling in the pathogenesis of arrhythmogenic cardiomyopathy (ACM), a familial non-ischemic heart muscle disease characterized by life-threatening arrhythmias and progressive myocardial injury. Here, we provide new evidence implicating inflammatory lipid autocoids in ACM. We show that specialized pro-resolving lipid mediators are reduced in hearts of Dsg2mut/mut mice, a well characterized mouse model of ACM. We also found that ACM disease features can be reversed in rat ventricular myocytes expressing mutant JUP by the pro-resolving epoxy fatty acid (EpFA) 14,15-eicosatrienoic acid (14-15-EET), whereas 14,15-EE-5(Z)E which antagonizes actions of the putative 14,15-EET receptor, intensified nuclear accumulation of the desmosomal protein plakoglobin. Soluble epoxide hydrolase (sEH), an enzyme that rapidly converts pro-resolving EpFAs into polar, far less active or even pro-inflammatory diols, is highly expressed in cardiac myocytes in Dsg2mut/mut mice. Inhibition of sEH prevented progression of myocardial injury in Dsg2mut/mut mice and led to recovery of contractile function. This was associated with reduced myocardial expression of genes involved in the innate immune response and fewer pro-inflammatory macrophages expressing CCR2, which mediate myocardial injury in Dsg2mut/mut mice. These results suggest that pro-inflammatory eicosanoids contribute to the pathogenesis of ACM and, further, that inhibition of sEH may be an effective, mechanism-based therapy for ACM patients.

4.
J Clin Invest ; 134(9)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483511

RESUMEN

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.


Asunto(s)
Asma , Diferenciación Celular , Linfocitos T Reguladores , Células Th2 , Tromboxano A2 , Animales , Ratones , Células Th2/inmunología , Células Th2/patología , Tromboxano A2/metabolismo , Tromboxano A2/inmunología , Linfocitos T Reguladores/inmunología , Asma/inmunología , Asma/patología , Asma/tratamiento farmacológico , Asma/genética , Ratones Noqueados , Interleucina-9/inmunología , Interleucina-9/genética , Interleucina-9/metabolismo , Neumonía/inmunología , Neumonía/patología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Pulmón/inmunología , Pulmón/patología , Ovalbúmina/inmunología , Femenino , Linfocitos T Colaboradores-Inductores/inmunología
5.
Free Radic Biol Med ; 213: 222-232, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262546

RESUMEN

BACKGROUND: Inflammation and oxidative stress are critical to pregnancy, but most human study has focused on downstream, non-causal indicators. Oxylipins are lipid mediators of inflammation and oxidative stress that act through many biological pathways. Our aim was to characterize predictors of circulating oxylipin concentrations based on maternal characteristics. METHODS: Our study was conducted among 901 singleton pregnancies in the LIFECODES Fetal Growth Study, a nested case-cohort with recruitment from 2007 to 2018. We measured a targeted panel of oxylipins in early pregnancy plasma and urine samples from several biosynthetic pathways, defined by the polyunsaturated fatty acid (PUFA) precursor and enzyme group. We evaluated levels across predictors, including characteristics of participants' pregnancy, socioeconomic determinants, and obstetric and medical history. RESULTS: Current pregnancy and sociodemographic characteristics were the most important predictors of circulating oxylipins concentrations. Plasma oxylipins were lower and urinary oxylipins higher for participants with a later gestational age at sampling (13-23 weeks), higher prepregnancy BMI (obesity class I, II, or III), Black or Hispanic race and ethnicity, and lower socioeconomic status (younger age, lower education, and uninsured). For example, compared to those with normal or underweight prepregnancy BMI, participants with class III prepregnancy obesity had 45-46% lower plasma epoxy-eicosatrienoic acids, the anti-inflammatory oxylipins produced from arachidonic acid (AA) by cytochrome P450, and had 81% higher urinary 15-series F2-isoprostanes, an indicator of oxidative stress produced from non-enzymatic AA oxidation. Similarly, in urine, Black participants had 92% higher prostaglandin E2 metabolite, a pro-inflammatory oxylipin, and 41% higher 5-series F2-isoprostane, an oxidative stress indicator. CONCLUSIONS: In this large pregnancy study, we found that circulating levels of oxylipins were different for participants of lower socioeconomic status or of a systematically marginalized racial and ethnic groups. Given associations differed along biosynthetic pathways, results provide insight into etiologic links between maternal predictors and inflammation and oxidative stress.


Asunto(s)
F2-Isoprostanos , Oxilipinas , Embarazo , Femenino , Humanos , Lactante , Ácidos Grasos Insaturados , Isoprostanos , Inflamación , Obesidad , Ácido Araquidónico , Estrés Oxidativo
6.
J Allergy Clin Immunol Glob ; 3(1): 100192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38187868

RESUMEN

Background: The National Asthma Education and Prevention Program guidelines emphasize environmental control as an integral part of asthma management; however, limited national-level data exist on how clinicians implement environmental control recommendations. Objective: We analyzed data on clinicians' self-reported use of recommended environmental control practices in a nationally representative sample (n = 1645) of primary care physicians, asthma specialists, and advanced practice providers from the National Asthma Survey of Physicians, a supplemental questionnaire to the 2012 National Ambulatory Medical Care Survey. Methods: We examined clinician and practice characteristics as well as clinicians' decisions and strategies regarding environmental trigger assessment and environmental control across provider groups. Regression modeling was used to identify clinician and practice characteristics associated with implementation of guideline recommendations. Results: A higher percentage of specialists assessed asthma triggers at home, school, and/or work than primary care or advanced practice providers (almost always: 53.6% vs 29.4% and 23.7%, respectively, P < .001). Almost all clinicians (>93%) recommended avoidance of secondhand tobacco smoke, whereas recommendations regarding cooking appliances (eg, proper ventilation) were infrequent. Although assessment and recommendation practices differed between clinician groups, modeling results showed that clinicians who reported almost always assessing asthma control were 5- to 6-fold more likely to assess environmental asthma triggers. Use of asthma action plans was also strongly associated with implementation of environmental control recommendations. Conclusions: Environmental assessment and recommendations to patients varied among asthma care providers. High adherence to other key guideline components, such as assessing asthma control, was associated with environmental assessment and recommendation practices on environmental control.

7.
J Cardiovasc Pharmacol ; 83(1): 46-54, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788350

RESUMEN

ABSTRACT: Coronary reactive hyperemia (CRH) is impaired in cardiovascular diseases, and angiotensin-II (Ang-II) exacerbates it. However, it is unknown how Ang-II affects CRH in Tie2-sEH Tr (human-sEH-overexpressed) versus wild-type (WT) mice. sEH-overexpression resulted in CRH reduction in Tie2-sEH Tr versus WT. We hypothesized that Ang-II exacerbates CRH reduction in Tie2-sEH Tr versus WT. The Langendorff system measured coronary flow in Tie2-sEH Tr and WT. The hearts were exposed to 15-second ischemia, and CRH was assessed in 10 mice each. Repayment volume was reduced by 40.50% in WT treated with Ang-II versus WT (7.42 ± 0.8 to 4.49 ± 0.8 mL/g) and 48% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (5.18 ± 0.4 to 2.68 ± 0.3 mL/g). Ang-II decreased repayment duration by 50% in WT-treated with Ang-II versus WT (2.46 ± 0.5 to 1.24 ± 0.4 minutes) and 54% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (1.66 ± 0.4 to 0.76 ± 0.2 minutes). Peak repayment flow was reduced by 11.2% in WT treated with Ang-II versus WT (35.98 ± 0.7 to 32.11 ± 1.4 mL/g) and 4% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (32.18 ± 0.6 to 30.89 ± 1.5 mL/g). Furthermore, coronary flow was reduced by 43% in WT treated with Ang-II versus WT (14.2 ± 0.5 to 8.15 ± 0.8 mL/min/g) and 32% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (12.1 ± 0.8 to 8.3 ± 1.2 mL/min/g). Moreover, the Ang-II-AT 1 -receptor and CYP4A were increased in Tie2-sEHTr. Our results demonstrate that Ang-II exacerbates CRH reduction in Tie2-sEH Tr mice.


Asunto(s)
Epóxido Hidrolasas , Hiperemia , Humanos , Ratones , Animales , Epóxido Hidrolasas/genética , Angiotensina II , Corazón , Ratones Endogámicos C57BL
8.
Vascul Pharmacol ; 153: 107235, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742819

RESUMEN

RATIONALE: Pulmonary hypertension (PH) is a multifactorial disease with a poor prognosis and inadequate treatment options. We found two-fold higher expression of the orphan G-Protein Coupled Receptor 75 (GPR75) in leukocytes and pulmonary arterial smooth muscle cells from idiopathic PH patients and from lungs of C57BL/6 mice exposed to hypoxia. We therefore postulated that GPR75 signaling is critical to the pathogenesis of PH. METHODS: To test this hypothesis, we exposed global (Gpr75-/-) and endothelial cell (EC) GPR75 knockout (EC-Gpr75-/-) mice and wild-type (control) mice to hypoxia (10% oxygen) or normal atmospheric oxygen for 5 weeks. We then recorded echocardiograms and performed right heart catheterizations. RESULTS: Chronic hypoxia increased right ventricular systolic and diastolic pressures in wild-type mice but not Gpr75-/- or EC-Gpr75-/- mice. In situ hybridization and qPCR results revealed that Gpr75 expression was increased in the alveoli, airways and pulmonary arteries of mice exposed to hypoxia. In addition, levels of chemokine (CC motif) ligand 5 (CCL5), a low affinity ligand of GPR75, were increased in the lungs of wild-type, but not Gpr75-/-, mice exposed to hypoxia, and CCL5 enhanced hypoxia-induced contraction of intra-lobar pulmonary arteries in a GPR75-dependent manner. Gpr75 knockout also increased pulmonary cAMP levels and decreased contraction of intra-lobar pulmonary arteries evoked by endothelin-1 or U46619 in cAMP-protein kinase A-dependent manner. CONCLUSION: These results suggest GPR75 has a significant role in the development of hypoxia-induced PH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Ratones , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Arteria Pulmonar , Ligandos , Células Cultivadas , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Oxígeno/metabolismo , Ratones Noqueados
9.
Pharmacol Ther ; 249: 108497, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479036
10.
FASEB J ; 37(7): e23009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37273180

RESUMEN

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Asunto(s)
Neoplasias del Colon , Ácido Linoleico , Humanos , Ratones , Animales , Ácido Linoleico/farmacología , Ácido Linoleico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Eicosanoides , Sistema Enzimático del Citocromo P-450/metabolismo , Dieta , Neoplasias del Colon/etiología
11.
Adv Pharmacol ; 97: xv-xvii, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37236767
12.
Glycobiology ; 33(6): 476-489, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37115803

RESUMEN

The COVID-19 global pandemic has underscored the need to understand how viruses and other pathogens are able to infect and replicate within the respiratory system. Recent studies have highlighted the role of highly O-glycosylated mucins in the protection of the respiratory system as well as how mucin-type O-glycosylation may be able to modify viral infectivity. Therefore, we set out to identify the specific genes controlling mucin-type O-glycosylation throughout the mouse respiratory system as well as determine how their expression and the expression of respiratory mucins is influenced by infection or injury. Here, we show that certain mucins and members of the Galnt family are abundantly expressed in specific respiratory tissues/cells and demonstrate unique patterns of O-glycosylation across diverse respiratory tissues. Moreover, we find that the expression of certain Galnts and mucins is altered during lung infection and injury in experimental mice challenged with infectious agents, toxins, and allergens. Finally, we examine gene expression changes of Galnts and mucins in a mouse model of SARS-CoV-2 infection. Our work provides foundational knowledge regarding the specific expression of Galnt enzyme family members and mucins throughout the respiratory system, and how their expression is altered upon lung infection and injury.


Asunto(s)
COVID-19 , Mucinas , Animales , Ratones , Mucinas/genética , Mucinas/metabolismo , Glicosilación , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sistema Respiratorio/metabolismo
13.
J Biol Chem ; 299(4): 103049, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822325

RESUMEN

Cytochromes P450 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which have numerous effects. After cardiac ischemia, EET-induced coronary vasodilation increases delivery of oxygen/nutrients to the myocardium, and EET-induced signaling protects cardiomyocytes against postischemic mitochondrial damage. Soluble epoxide hydrolase 2 (EPHX2) diminishes the benefits of EETs through hydrolysis to less active dihydroxyeicosatrienoic acids. EPHX2 inhibition or genetic disruption improves recovery of cardiac function after ischemia. Immunohistochemical staining revealed EPHX2 expression in cardiomyocytes and some endothelial cells but little expression in cardiac smooth muscle cells or fibroblasts. To determine specific roles of EPHX2 in cardiac cell types, we generated mice with cell-specific disruption of Ephx2 in endothelial cells (Ephx2fx/fx/Tek-cre) or cardiomyocytes (Ephx2fx/fx/Myh6-cre) to compare to global Ephx2-deficient mice (global Ephx2-/-) and WT (Ephx2fx/fx) mice in expression, EET hydrolase activity, and heart function studies. Most cardiac EPHX2 expression and activity is in cardiomyocytes with substantially less activity in endothelial cells. Ephx2fx/fx/Tek-cre hearts have similar EPHX2 expression, hydrolase activity, and postischemic cardiac function as control Ephx2fx/fx hearts. However, Ephx2fx/fx/Myh6-cre hearts were similar to global Ephx2-/- hearts with significantly diminished EPHX2 expression, decreased hydrolase activity, and enhanced postischemic cardiac function compared to Ephx2fx/fx hearts. During reperfusion, Ephx2fx/fx/Myh6-cre hearts displayed increased ERK activation compared to Ephx2fx/fx hearts, which could be reversed by EEZE treatment. EPHX2 did not regulate coronary vasodilation in this model. We conclude that EPHX2 is primarily expressed in cardiomyocytes where it regulates EET hydrolysis and postischemic cardiac function, whereas endothelial EPHX2 does not play a significant role in these processes.


Asunto(s)
Miocardio , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Miocardio/metabolismo , Isquemia/metabolismo , Eicosanoides/metabolismo , Reperfusión , Hidrolasas/metabolismo , Epóxido Hidrolasas/metabolismo
14.
PLoS One ; 18(1): e0280387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36638125

RESUMEN

Despite the prominent use of complex survey data and the growing popularity of machine learning methods in epidemiologic research, few machine learning software implementations offer options for handling complex samples. A major challenge impeding the broader incorporation of machine learning into epidemiologic research is incomplete guidance for analyzing complex survey data, including the importance of sampling weights for valid prediction in target populations. Using data from 15, 820 participants in the 1988-1994 National Health and Nutrition Examination Survey cohort, we determined whether ignoring weights in gradient boosting models of all-cause mortality affected prediction, as measured by the F1 score and corresponding 95% confidence intervals. In simulations, we additionally assessed the impact of sample size, weight variability, predictor strength, and model dimensionality. In the National Health and Nutrition Examination Survey data, unweighted model performance was inflated compared to the weighted model (F1 score 81.9% [95% confidence interval: 81.2%, 82.7%] vs 77.4% [95% confidence interval: 76.1%, 78.6%]). However, the error was mitigated if the F1 score was subsequently recalculated with observed outcomes from the weighted dataset (F1: 77.0%; 95% confidence interval: 75.7%, 78.4%). In simulations, this finding held in the largest sample size (N = 10,000) under all analytic conditions assessed. For sample sizes <5,000, sampling weights had little impact in simulations that more closely resembled a simple random sample (low weight variability) or in models with strong predictors, but findings were inconsistent under other analytic scenarios. Failing to account for sampling weights in gradient boosting models may limit generalizability for data from complex surveys, dependent on sample size and other analytic properties. In the absence of software for configuring weighted algorithms, post-hoc re-calculations of unweighted model performance using weighted observed outcomes may more accurately reflect model prediction in target populations than ignoring weights entirely.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Encuestas Nutricionales , Encuestas y Cuestionarios , Programas Informáticos
15.
Arthritis Rheumatol ; 74(12): 2032-2041, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054084

RESUMEN

OBJECTIVE: Growing evidence suggests increasing frequencies of autoimmunity and autoimmune diseases, but findings are limited by the lack of systematic data and evolving approaches and definitions. This study was undertaken to investigate whether the prevalence of antinuclear antibodies (ANA), the most common biomarker of autoimmunity, changed over a recent 25-year span in the US. METHODS: Serum ANA were measured by standard indirect immunofluorescence assays on HEp-2 cells in 13,519 participants age ≥12 years from the National Health and Nutrition Examination Survey, with approximately one-third from each of 3 time periods: 1988-1991, 1999-2004, and 2011-2012. We used logistic regression adjusted for sex, age, race/ethnicity, and survey design variables to estimate changes in ANA prevalence across the time periods. RESULTS: The prevalence of ANA was 11.0% (95% confidence interval [95% CI] 9.7-12.6%) in 1988-1991, 11.4% (95% CI 10.2-12.8%) in 1999-2004, and 16.1% (95% CI 14.4-18.0%) in 2011-2012 (P for trend <0.0001), corresponding to ~22.3 million, ~26.6 million, and ~41.5 million affected individuals, respectively. Among adolescents age 12-19 years, ANA prevalence increased substantially, with odds ratios of 2.07 (95% CI 1.18-3.64) and 2.77 (95% CI 1.56-4.91) in the second and third time periods relative to the first (P for trend = 0.0004). ANA prevalence increased in both sexes (especially in men), older adults (age ≥50 years), and non-Hispanic white individuals. These increases in ANA prevalence were not explained by concurrent trends in weight (obesity/overweight), smoking exposure, or alcohol consumption. CONCLUSION: The prevalence of ANA in the US has increased considerably in recent years. Additional studies to determine factors underlying these increases in ANA prevalence could elucidate causes of autoimmunity and enable the development of preventative measures.


Asunto(s)
Anticuerpos Antinucleares , Enfermedades Autoinmunes , Masculino , Adolescente , Femenino , Estados Unidos/epidemiología , Humanos , Anciano , Niño , Adulto Joven , Adulto , Persona de Mediana Edad , Prevalencia , Encuestas Nutricionales , Técnica del Anticuerpo Fluorescente Indirecta
16.
Am J Physiol Heart Circ Physiol ; 323(4): H670-H687, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985007

RESUMEN

Endotoxemia elicits a multiorgan inflammatory response that results in cardiac dysfunction and often leads to death. Inflammation-induced metabolism of endogenous N-3 and N-6 polyunsaturated fatty acids generates numerous lipid mediators, such as epoxy fatty acids (EpFAs), which protect the heart. However, EpFAs are hydrolyzed by soluble epoxide hydrolase (sEH), which attenuates their cardioprotective actions. Global genetic disruption of sEH preserves EpFA levels and attenuates cardiac dysfunction in mice following acute lipopolysaccharide (LPS)-induced inflammatory injury. In leukocytes, EpFAs modulate the innate immune system through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. However, the mechanisms by which both EpFAs and sEH inhibition exert their protective effects in the cardiomyocyte are still elusive. This study investigated whether cardiomyocyte-specific sEH disruption attenuates inflammation and cardiac dysfunction in acute LPS inflammatory injury via modulation of the NLRP3 inflammasome. We use tamoxifen-inducible CreER recombinase technology to target sEH genetic disruption to the cardiomyocyte. Primary cardiomyocyte studies provide mechanistic insight into inflammasome signaling. For the first time, we demonstrate that cardiomyocyte-specific sEH disruption preserves cardiac function and attenuates inflammatory responses by limiting local cardiac inflammation and activation of the systemic immune response. Mechanistically, inhibition of cardiomyocyte-specific sEH activity or exogenous EpFA treatment do not prevent upregulation of NLRP3 inflammasome machinery in neonatal rat cardiomyocytes. Rather, they limit downstream activation of the pathway leading to release of fewer chemoattractant factors and recruitment of immune cells to the heart. These data emphasize that cardiomyocyte sEH is vital for mediating detrimental systemic inflammation.NEW & NOTEWORTHY The cardioprotective effects of genetic disruption and pharmacological inhibition of sEH have been demonstrated in a variety of cardiac disease models, including acute LPS inflammatory injury. For the first time, it has been demonstrated that sEH genetic disruption limited to the cardiomyocyte profoundly preserves cardiac function and limits local and systemic inflammation following acute LPS exposure. Hence, cardiomyocytes serve a critical role in the innate immune response that can be modulated to protect the heart.


Asunto(s)
Cardiopatías , Miocitos Cardíacos , Animales , Factores Quimiotácticos/uso terapéutico , Epóxido Hidrolasas/genética , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/uso terapéutico , Inflamasomas , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratas , Recombinasas/uso terapéutico , Tamoxifeno/uso terapéutico
17.
Metabolism ; 134: 155266, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868524

RESUMEN

INTRODUCTION: Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES: To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS: The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS: CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS: CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.


Asunto(s)
Neovascularización Coroidal , Ácidos Grasos Omega-3 , Degeneración Macular , Animales , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/prevención & control , Citocromo P-450 CYP2C8/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Insaturados/uso terapéutico , Flunarizina/uso terapéutico , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Ratones , Ratones Endogámicos C57BL , NADPH-Ferrihemoproteína Reductasa
18.
Front Cardiovasc Med ; 9: 879209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665247

RESUMEN

Objective: Metabolites derived from N-3 and N-6 polyunsaturated fatty acids (PUFAs) have both beneficial and detrimental effects on the heart. However, contribution of these lipid mediators to dilated cardiomyopathy (DCM)-associated mitochondrial dysfunction remains unknown. This study aimed to characterize DCM-specific alterations in the PUFA metabolome in conjunction with cardiac mitochondrial quality in human explanted heart tissues. Methods: Left ventricular tissues obtained from non-failing control (NFC) or DCM explanted hearts, were assessed for N-3 and N-6 PUFA metabolite levels using LC-MS/MS. mRNA and protein expression of CYP2J2, CYP2C8 and epoxide hydrolase enzymes involved in N-3 and N-6 PUFA metabolism were quantified. Cardiac mitochondrial quality was assessed by transmission electron microscopy, measurement of respiratory chain complex activities and oxygen consumption (respiratory control ratio, RCR) during ADP-stimulated ATP production. Results: Formation of cardioprotective CYP-derived lipid mediators, epoxy fatty acids (EpFAs), and their corresponding diols were enhanced in DCM hearts. These findings were corroborated by increased expression of CYP2J2 and CYP2C8 enzymes, as well as microsomal and soluble epoxide hydrolase enzymes, suggesting enhanced metabolic flux and EpFA substrate turnover. DCM hearts demonstrated marked damage to mitochondrial ultrastructure and attenuated mitochondrial function. Incubation of fresh DCM cardiac fibers with the protective EpFA, 19,20-EDP, significantly improved mitochondrial function. Conclusions: The current study demonstrates that increased expressions of CYP-epoxygenase enzymes and epoxide hydrolases in the DCM heart correspond with enhanced PUFA-derived EpFA turnover. This is accompanied by severe mitochondrial functional impairment which can be rescued by the administration of exogenous EpFAs.

19.
Respir Res ; 23(1): 150, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681205

RESUMEN

BACKGROUND: Oxidative stress plays a key role in the pathogenesis of respiratory diseases; however, studies on antioxidant vitamins and respiratory outcomes have been conflicting. We evaluated whether lower serum levels of vitamins A, C, D, and E are associated with respiratory morbidity and mortality in the U.S. adult population. METHODS: We conducted a pooled analysis of data from the 1988-1994 and 1999-2006 National Health and Nutrition Examination Survey (participants aged ≥ 20 years). We estimated covariate-adjusted odds ratios (aOR) per interquartile decrease in each serum vitamin level to quantify associations with respiratory morbidity, and covariate-adjusted hazard ratios (aHR) to quantify associations with respiratory mortality assessed prospectively through 2015. Vitamin supplementation and smoking were evaluated as potential effect modifiers. RESULTS: Lower serum vitamin C increased the odds of wheeze among all participants (overall aOR: 1.08, 95% CI: 1.01-1.16). Among smokers, lower serum α-tocopherol vitamin E increased the odds of wheeze (aOR: 1.11, 95% CI: 1.04-1.19) and chronic bronchitis/emphysema (aOR: 1.13, 95% CI: 1.03-1.24). Conversely, lower serum γ-tocopherol vitamin E was associated with lower odds of wheeze and chronic bronchitis/emphysema (overall aORs: 0.85, 95% CI: 0.79-0.92 and 0.85, 95% CI: 0.76-0.95, respectively). Lower serum vitamin C was associated with increased chronic lower respiratory disease (CLRD) mortality in all participants (overall aHR: 1.27, 95% CI: 1.07-1.51), whereas lower serum 25-hydroxyvitamin D (25-OHD) tended to increase mortality from CLRD and influenza/pneumonia among smokers (aHR range: 1.33-1.75). Mortality from influenza/ pneumonia increased with decreasing serum vitamin A levels in all participants (overall aHR: 1.21, 95% CI: 0.99-1.48). In pooled analysis, vitamin C deficiency and 25-OHD insufficiency were associated with mortality from influenza/pneumonia, increasing mortality risk up to twofold. CONCLUSIONS: Our analysis of nationally representative data on over 34,000 participants showed that lower serum levels of vitamins A, C, D, and α-tocopherol vitamin E are associated with increased respiratory morbidity and/or mortality in U.S. adults. The results underscore the importance of antioxidant vitamins in respiratory health.


Asunto(s)
Bronquitis Crónica , Enfisema , Gripe Humana , Adulto , Antioxidantes , Ácido Ascórbico , Humanos , Morbilidad , Encuestas Nutricionales , Vitamina A , Vitaminas , alfa-Tocoferol
20.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34732583

RESUMEN

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a novel furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation in cells. Here, we show that O-glycosylation near the furin cleavage site is mediated by members of the GALNT enzyme family, resulting in decreased furin cleavage and decreased syncytia formation. Moreover, we show that O-glycosylation is dependent on the novel proline at position 681 (P681). Mutations of P681 seen in the highly transmissible alpha and delta variants abrogate O-glycosylation, increase furin cleavage, and increase syncytia formation. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that host O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the role of the P681 mutations found in the highly transmissible alpha and delta variants.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Fusión Celular , Línea Celular , Furina/metabolismo , Células Gigantes , Glicosilación , Humanos , N-Acetilgalactosaminiltransferasas/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Polipéptido N-Acetilgalactosaminiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...