Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 82(2): 208-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25704846

RESUMEN

Pectins are critical polysaccharides of the cell wall that are involved in key aspects of a plant's life, including cell-wall stiffness, cell-to-cell adhesion, and mechanical strength. Pectins undergo methylesterification, which affects their cellular roles. Pectin methyltransferases are believed to methylesterify pectins in the Golgi, but little is known about their identity. To date, there is only circumstantial evidence to support a role for QUASIMODO2 (QUA2)-like proteins and an unrelated plant-specific protein, cotton Golgi-related 3 (CGR3), in pectin methylesterification. To add to the knowledge of pectin biosynthesis, here we characterized a close homolog of CGR3, named CGR2, and evaluated the effect of loss-of-function mutants and over-expression lines of CGR2 and CGR3 in planta. Our results show that, similar to CGR3, CGR2 is a Golgi protein whose enzyme active site is located in the Golgi lumen where pectin methylesterification occurs. Through phenotypical analyses, we also established that simultaneous loss of CGR2 and CGR3 causes severe defects in plant growth and development, supporting critical but overlapping functional roles of these proteins. Qualitative and quantitative cell-wall analytical assays of the double knockout mutant demonstrated reduced levels of pectin methylesterification, coupled with decreased microsomal pectin methyltransferase activity. Conversely, CGR2 and CGR3 over-expression lines have markedly opposite phenotypes to the double knockout mutant, with increased cell-wall methylesterification levels and microsomal pectin methyltransferase activity. Based on these findings, we propose that CGR2 and CGR3 are critical proteins in plant growth and development that act redundantly in pectin methylesterification in the Golgi apparatus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Aparato de Golgi/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
2.
Plant J ; 81(4): 537-47, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25557048

RESUMEN

Mixed-linkage glucan (MLG) is a significant cell wall carbohydrate in grasses and an important carbon source for human consumption and biofuel production. MLG biosynthesis depends on the biochemical activity of membrane spanning glucan synthases encoded by the CSLH and CSLF cellulose synthase-like gene families. CSLF proteins are the best characterized to date but relatively little information is known about their topology with respect to the biosynthetic membranes. In this study, we report on the topology of CSLF6 protein derived from the model grass species Brachypodium distachyon (BdCSLF6) when it is expressed in heterologous systems. Using live cell imaging and immuno-electron microscopy analyses of tobacco epidermal cells expressing BdCSLF6, we demonstrate that a functional yellow fluorescent protein (YFP) fusion of BdCSLF6 is localized to the Golgi apparatus and that the Golgi localization of BdCSLF6 is sufficient for MLG biosynthesis. By implementing protease protection assays of BdCSLF6 expressed in the yeast Pichia pastoris, we also demonstrate that the catalytic domain, the N-terminus and the C- terminus of the protein are exposed in the cytosol. Furthermore, we found that BdCSLF6 is capable of producing MLG not only in tobacco cells but also in Pichia, which generally does not produce MLG. Together, these results support the conclusion that BdCSLF6 can produce both of the linkages present in the (1,3;1,4)-ß-d-glucan chain of MLG and that the product is channelled at the Golgi into the secretory pathway for deposition into the cell wall.


Asunto(s)
Brachypodium/genética , Glucanos/biosíntesis , Aparato de Golgi/metabolismo , Proteínas de Plantas/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Plantas/genética , Transporte de Proteínas
3.
J Biol Chem ; 289(43): 29728-38, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25210037

RESUMEN

The plant hormone jasmonate (JA) controls diverse aspects of plant immunity, growth, and development. The amplitude and duration of JA responses are controlled in large part by the intracellular level of jasmonoyl-L-isoleucine (JA-Ile). In contrast to detailed knowledge of the JA-Ile biosynthetic pathway, little is known about enzymes involved in JA-Ile metabolism and turnover. Cytochromes P450 (CYP) 94B3 and 94C1 were recently shown to sequentially oxidize JA-Ile to hydroxy (12OH-JA-Ile) and dicarboxy (12COOH-JA-Ile) derivatives. Here, we report that a third member (CYP94B1) of the CYP94 family also participates in oxidative turnover of JA-Ile in Arabidopsis. In vitro studies showed that recombinant CYP94B1 converts JA-Ile to 12OH-JA-Ile and lesser amounts of 12COOH-JA-Ile. Consistent with this finding, metabolic and physiological characterization of CYP94B1 loss-of-function and overexpressing plants demonstrated that CYP94B1 and CYP94B3 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in wounded leaves. Analysis of CYP94-promoter-GUS reporter lines indicated that CYP94B1 and CYP94B3 serve unique and overlapping spatio-temporal roles in JA-Ile homeostasis. Subcellular localization studies showed that CYP94s involved in conversion of JA-Ile to 12COOH-JA-Ile reside on endoplasmic reticulum (ER). In vitro studies further showed that 12COOH-JA-Ile, unlike JA-Ile, fails to promote assembly of COI1-JAZ co-receptor complexes. The double loss-of-function mutant of CYP94B3 and ILL6, a JA-Ile amidohydrolase, displayed a JA profile consistent with the collaborative action of the oxidative and the hydrolytic pathways in JA-Ile turnover. Collectively, our results provide an integrated view of how multiple ER-localized CYP94 and JA amidohydrolase enzymes attenuate JA signaling during stress responses.


Asunto(s)
Arabidopsis/enzimología , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Retículo Endoplásmico/metabolismo , Isoleucina/análogos & derivados , Familia de Multigenes , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biocatálisis , Ciclopentanos/química , ADN Bacteriano/genética , Homeostasis , Hidrólisis , Isoleucina/química , Isoleucina/metabolismo , Redes y Vías Metabólicas , Mutagénesis Insercional/genética , Mutación/genética , Especificidad de Órganos , Oxidación-Reducción , Oxilipinas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Unión Proteica , Fracciones Subcelulares/enzimología
4.
Mol Plant ; 4(5): 832-44, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21422118

RESUMEN

Plant cell walls are complex structures that offer structural and mechanical support to plant cells and are ultimately responsible for plant architecture and form. Pectins are a large group of complex polysaccharides of the plant cell wall that are made in the Golgi and secreted to the wall. The methylesterification of pectins is believed to be an important factor for the dynamic properties of the cell wall. Here, we report on a protein of unknown function discovered using an extensive proteomics analysis of cotton Golgi. Through bioinformatic analyses, we identified the ortholog of such protein, here named cotton Golgi-related 3 (CGR3) in Arabidopsis and found that it shares conserved residues with S-adenosylmethionine methyltransferases. We established that CGR3 is localized at the Golgi apparatus and that the expression of the CGR3 gene is correlated with that of several cell wall biosynthetic genes, suggesting a possible role of the protein in pectin modifications. Consistent with this hypothesis, immunofluorescence microscopy with antibodies for homogalacturonan pectins (HG) indicated that the cell walls of cgr3 knockout mutants and plants overexpressing CGR3 are decreased and increased in HG methylesterification, respectively. Our results suggest that CGR3 plays a role in the methylesterification of homogalacturonan in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Pectinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/genética , Pared Celular/metabolismo , Clonación Molecular , Esterificación , Aparato de Golgi/genética , Datos de Secuencia Molecular , Transporte de Proteínas
5.
Plant Cell ; 21(11): 3655-71, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19933202

RESUMEN

How the endoplasmic reticulum (ER) and the Golgi apparatus maintain their morphological and functional identity while working in concert to ensure the production of biomolecules necessary for the cell's survival is a fundamental question in plant biology. Here, we isolated and characterized an Arabidopsis thaliana mutant that partially accumulates Golgi membrane markers and a soluble secretory marker in globular structures composed of a mass of convoluted ER tubules that maintain a connection with the bulk ER. We established that the aberrant phenotype was due to a missense recessive mutation in sec24A, one of the three Arabidopsis isoforms encoding the coat protomer complex II (COPII) protein Sec24, and that the mutation affects the distribution of this critical component at ER export sites. By contrast, total loss of sec24A function was lethal, suggesting that Arabidopsis sec24A is an essential gene. These results produce important insights into the functional diversification of plant COPII coat components and the role of these proteins in maintaining the dynamic identity of organelles of the early plant secretory pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Mutación Missense/genética , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Secuencia Conservada/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patología , Microscopía Confocal , Microscopía Electrónica de Transmisión , Transporte de Proteínas/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA