Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Essays Biochem ; 52: 135-45, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22708568

RESUMEN

PTMs (post-translational modifications) of lysine residues have proven to be major regulators of gene expression, protein-protein interactions, and protein processing and degradation. This is of particular importance in regulating the cytoskeleton, an enormously complex system of proteins responsible for cell motility, intracellular trafficking, and maintenance of cell form and structure. The cytoskeleton is present in all cells, including eukaryotes and prokaryotes, and comprises structures such as flagella, cilia and lamellipodia which play critical roles in intracellular transport and cellular division. Cytoskeletal regulation relies on numerous multi-component assemblies. In this chapter, we focus on the regulation of the cytoskeleton by means of PTMs of lysine residues on the cytoskeletal subunits and their accessory proteins. We specifically address the three main classes of cytoskeletal proteins in eukaryotes that polymerize into filaments, including microfilaments (actin filaments), intermediate filaments and microtubules. We discuss the identification and biological importance of lysine acetylation, a regulator of all three filament types. We also review additional lysine modifications, such as ubiquitination and SUMOylation, and their role in protein regulation and processing.


Asunto(s)
Citoesqueleto/metabolismo , Lisina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Humanos , Procesamiento Proteico-Postraduccional , Sumoilación/fisiología , Ubiquitinación/fisiología
2.
Biochemistry ; 50(33): 7218-27, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21749055

RESUMEN

Overexpression of S100A4, a member of the S100 family of Ca(2+)-binding proteins, is associated with a number of human pathologies, including fibrosis, inflammatory disorders, and metastatic disease. The identification of small molecules that disrupt S100A4/target interactions provides a mechanism for inhibiting S100A4-mediated cellular activities and their associated pathologies. Using an anisotropy assay that monitors the Ca(2+)-dependent binding of myosin-IIA to S100A4, NSC 95397 was identified as an inhibitor that disrupts the S100A4/myosin-IIA interaction and inhibits S100A4-mediated depolymerization of myosin-IIA filaments. Mass spectrometry demonstrated that NSC 95397 forms covalent adducts with Cys81 and Cys86, which are located in the canonical target binding cleft. Mutagenesis studies showed that covalent modification of just Cys81 is sufficient to inhibit S100A4 function with respect to myosin-IIA binding and depolymerization. Remarkably, substitution of Cys81 with serine or alanine significantly impaired the ability of S100A4 to promote myosin-IIA filament disassembly. As reversible covalent cysteine modifications have been observed for several S100 proteins, we propose that modification of Cys81 may provide an additional regulatory mechanism for mediating the binding of S100A4 to myosin-IIA.


Asunto(s)
Cisteína/metabolismo , Naftoquinonas/farmacología , Miosina Tipo IIA no Muscular/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas S100/metabolismo , Cromatografía Liquida , Cisteína/genética , Citoesqueleto , Humanos , Miosina Tipo IIA no Muscular/antagonistas & inhibidores , Miosina Tipo IIA no Muscular/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteína de Unión al Calcio S100A4 , Proteínas S100/antagonistas & inhibidores , Proteínas S100/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fosfatasas cdc25/antagonistas & inhibidores
3.
Biochemistry ; 50(32): 6920-32, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21721535

RESUMEN

S100A4, a member of the Ca(2+)-activated S100 protein family, regulates the motility and invasiveness of cancer cells. Moreover, high S100A4 expression levels correlate with poor patient survival in several cancers. Although biochemical, biophysical, and structural data indicate that S100A4 is a noncovalent dimer, it is unknown if two functional S100A4 monomers are required for the productive recognition of protein targets and the promotion of cell invasion. To address this question, we created covalently linked S100A4 dimers using a glycine rich flexible linker. The single-chain S100A4 (sc-S100A4) proteins exhibited wild-type affinities for calcium and nonmuscle myosin-IIA, retained the ability to regulate nonmuscle myosin-IIA assembly, and promoted tumor cell invasion when expressed in S100A4-deficient colon carcinoma cells. Mutation of the two calcium-binding EF-hands in one monomer, while leaving the other monomer intact, caused a 30-60-fold reduction in binding affinity for nonmuscle myosin-IIA concomitant with a weakened ability to regulate the monomer-polymer equilibrium of nonmuscle myosin-IIA. Moreover, sc-S100A4 proteins with one monomer deficient in calcium responsiveness did not support S100A4-mediated colon carcinoma cell invasion. Cross-linking and titration data indicate that the S100A4 dimer binds a single myosin-IIA target peptide. These data are consistent with a model in which a single peptide forms interactions in the vicinity of the canonical target binding cleft of each monomer in such a manner that both target binding sites are required for the efficient interaction with myosin-IIA.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Proteínas S100/fisiología , Secuencia de Aminoácidos , Western Blotting , Línea Celular Tumoral , Cromatografía en Gel , Dicroismo Circular , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Invasividad Neoplásica , Proteína de Unión al Calcio S100A4 , Proteínas S100/química , Proteínas S100/metabolismo
4.
Chem Biol ; 17(4): 333-41, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20416505

RESUMEN

We determined the 2.2 A crystal structures of the red fluorescent protein TagRFP and its derivative, the blue fluorescent protein mTagBFP. The crystallographic analysis is consistent with a model in which TagRFP has the trans coplanar anionic chromophore with the conjugated pi-electron system, similar to that of DsRed-like chromophores. Refined conformation of mTagBFP suggests the presence of an N-acylimine functionality in its chromophore and single C(alpha)-C(beta) bond in the Tyr64 side chain. Mass spectrum of mTagBFP chromophore-bearing peptide indicates a loss of 20 Da upon maturation, whereas tandem mass spectrometry reveals that the C(alpha)-N bond in Leu63 is oxidized. These data indicate that mTagBFP has a new type of the chromophore, N-[(5-hydroxy-1H-imidazole-2-yl)methylidene]acetamide. We propose a chemical mechanism in which the DsRed-like chromophore is formed via the mTagBFP-like blue intermediate.


Asunto(s)
Proteínas Luminiscentes/química , Cristalografía por Rayos X , Proteínas Luminiscentes/genética , Modelos Moleculares , Mutación , Conformación Proteica , Proteína Fluorescente Roja
5.
Proc Natl Acad Sci U S A ; 106(50): 21097-102, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19934036

RESUMEN

Photoactivatable fluorescent proteins (PAFPs) are required for super-resolution imaging of live cells. Recently, the first red PAFP, PAmCherry1, was reported, which complements the photo-activatable GFP by providing a red super-resolution color. PAmCherry1 is originally "dark" but exhibits red fluorescence after UV-violet light irradiation. To define the structural basis of PAmCherry1 photoactivation, we determined its crystal structure in the dark and red fluorescent states at 1.50 A and 1.65 A, respectively. The non-coplanar structure of the chromophore in the dark PAmChery1 suggests the presence of an N-acylimine functionality and a single non-oxidized C(alpha)-C(beta) bond in the Tyr-67 side chain in the cyclized Met-66-Tyr-67-Gly-68 tripeptide. MS data of the chromophore-bearing peptide indicates the loss of 20 Da upon maturation, whereas tandem MS reveals the C(alpha)-N bond in Met-66 is oxidized. These data indicate that PAmCherry1 in the dark state possesses the chromophore N-[(E)-(5-hydroxy-1H-imidazol-2-yl)methylidene]acetamide, which, to our knowledge, has not been previously observed in PAFPs. The photoactivated PAmCherry1 exhibits a non-coplanar anionic DsRed-like chromophore but in the trans configuration. Based on the crystallographic analysis, MS data, and biochemical analysis of the PAmCherry1 mutants, we propose the detailed photoactivation mechanism. In this mechanism, the excited-state PAmCherry1 chromophore acts as the oxidant to release CO(2) molecule from Glu-215 via a Koble-like radical reaction. The Glu-215 decarboxylation directs the carbanion formation resulting in the oxidation of the Tyr-67 C(alpha)-C(beta) bond. The double bond extends the pi-conjugation between the phenolic ring of Tyr-67, the imidazolone, and the N-acylimine, resulting in the red fluorescent chromophore.


Asunto(s)
Proteínas Luminiscentes/química , Procesos Fotoquímicos , Cristalografía por Rayos X , Adaptación a la Oscuridad , Descarboxilación , Fluorescencia , Sustancias Luminiscentes , Proteínas Luminiscentes/efectos de la radiación , Conformación Proteica/efectos de la radiación
6.
J Mol Biol ; 390(3): 414-27, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19298826

RESUMEN

Arp2/3 complex plays a central role in the de novo nucleation of filamentous actin as branches on existing filaments. The complex must bind ATP, protein activators [e.g., Wiskott-Aldrich syndrome protein (WASp)], and the side of an actin filament to form a new actin filament. Amide hydrogen/deuterium exchange coupled with mass spectrometry was used to examine the structural and dynamic properties of the mammalian Arp2/3 complex in the presence of both ATP and the activating peptide segment from WASp. Changes in the rate of hydrogen exchange indicate that ATP binding causes conformational rearrangements of Arp2 and Arp3 that are transmitted allosterically to the Arp complex (ARPC)1, ARPC2, ARPC4, and ARPC5 subunits. These data are consistent with the closure of nucleotide-binding cleft of Arp3 upon ATP binding, resulting in structural rearrangements that propagate throughout the complex. Binding of the VCA domain of WASp to ATP-Arp2/3 further modulates the rates of hydrogen exchange in these subunits, indicating that a global conformational reorganization is occurring. These effects may include the direct binding of activators to Arp3, Arp2, and ARPC1; alterations in the relative orientations of Arp2 and Arp3; and the long-range transmission of activator-dependent signals to segments proposed to be involved in binding the F-actin mother filament.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/química , Adenosina Trifosfato/metabolismo , Estructura Cuaternaria de Proteína , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/aislamiento & purificación , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Regulación Alostérica , Animales , Bovinos , Modelos Moleculares , Timo/enzimología
7.
Immunity ; 26(3): 311-21, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17363302

RESUMEN

The T cell immunoglobulin mucin (Tim) family of receptors regulates effector CD4(+) T cell functions and is implicated in autoimmune and allergic diseases. Tim-3 induces immunological tolerance, and engagement of the Tim-3 immunoglobulin variable (IgV) domain by galectin-9 is important for appropriate termination of T helper 1-immune responses. The 2 A crystal structure of the Tim-3 IgV domain demonstrated that four cysteines, which are invariant within the Tim family, form two noncanonical disulfide bonds, resulting in a surface not present in other immunoglobulin superfamily members. Biochemical and biophysical studies demonstrated that this unique structural feature mediates a previously unidentified galectin-9-independent binding process and suggested that this structural feature is conserved within the entire Tim family. The current work provided a graphic example of the relationship between sequence, structure, and function and suggested that the interplay between multiple Tim-3-binding activities contributes to the regulated assembly of signaling complexes required for effective Th1-mediated immunity.


Asunto(s)
Galectinas/química , Receptores Virales/química , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Receptores Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA