Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(11): 1744-1753, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629917

RESUMEN

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.


Asunto(s)
Animales Modificados Genéticamente , Pollos , Cadenas Pesadas de Inmunoglobulina , Anticuerpos de Dominio Único , Animales , Pollos/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , Transgenes/genética , Linfocitos B/inmunología , Anticuerpos Antivirales/inmunología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Humanos
2.
J Am Chem Soc ; 145(42): 22979-22992, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815921

RESUMEN

The accurate modeling of energetic contributions to protein structure is a fundamental challenge in computational approaches to protein analysis and design. We describe a general computational method, EmCAST (empirical Cα stabilization), to score and optimize the sequence to the structure in proteins. The method relies on an empirical potential derived from the database of the Cα dihedral angle preferences for all possible four-residue sequences, using the data available in the Protein Data Bank. Our method produces stability predictions that naturally correlate one-to-one with the experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing residues in both helices and turns. For a set of eight variants, the predicted and experimental stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol standard error for EmCAST predictions. Tests against literature data for the stability effects of surface-exposed mutations show that EmCAST outperforms the existing stability prediction methods. UBA(1) variants were crystallized to verify and analyze their structures at an atomic resolution. Thermodynamic and kinetic folding experiments were performed to determine the magnitude and mechanism of stabilization. Our method has the potential to enable the rapid, rational optimization of natural proteins, expand the analysis of the sequence/structure relationship, and supplement the existing protein design strategies.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/genética , Proteínas/química , Mutación , Bases de Datos de Proteínas
3.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722054

RESUMEN

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Femenino , Animales , Bovinos , Anticuerpos , Fragmentos Fab de Inmunoglobulinas/genética , Disulfuros
4.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 1021-1031, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916226

RESUMEN

The application of sulfur single-wavelength anomalous dispersion (S-SAD) to determine the crystal structures of macromolecules can be challenging if the asymmetric unit is large, the crystals are small, the size of the anomalously scattering sulfur structure is large and the resolution at which the anomalous signals can be accurately measured is modest. Here, as a study of such a case, approaches to the SAD phasing of orthorhombic Ric-8A crystals are described. The structure of Ric-8A was published with only a brief description of the phasing process [Zeng et al. (2019), Structure, 27, 1137-1141]. Here, alternative approaches to determining the 40-atom sulfur substructure of the 103 kDa Ric-8A dimer that composes the asymmetric unit are explored. At the data-collection wavelength of 1.77 Šmeasured at the Frontier micro-focusing Macromolecular Crystallography (FMX) beamline at National Synchrotron Light Source II, the sulfur anomalous signal strength, |Δano|/σΔano (d''/sig), approaches 1.4 at 3.4 Šresolution. The highly redundant, 11 000 000-reflection data set measured from 18 crystals was segmented into isomorphous clusters using BLEND in the CCP4 program suite. Data sets within clusters or sets of clusters were scaled and merged using AIMLESS from CCP4 or, alternatively, the phenix.scale_and_merge tool from the Phenix suite. The latter proved to be the more effective in extracting anomalous signals. The HySS tool in Phenix, SHELXC/D and PRASA as implemented in the CRANK2 program suite were each employed to determine the sulfur substructure. All of these approaches were effective, although HySS, as a component of the phenix.autosol tool, required data from all crystals to find the positions of the sulfur atoms. Critical contributors in this case study to successful phase determination by SAD included (i) the high-flux FMX beamline, featuring helical-mode data collection and a helium-filled beam path, (ii) as recognized by many authors, a very highly redundant, multiple-crystal data set and (iii) the inclusion within that data set of data from crystals that were scanned over large ω ranges, yielding highly isomorphous and highly redundant intensity measurements.


Asunto(s)
Azufre , Sincrotrones , Cristalografía por Rayos X , Conformación Proteica , Azufre/química
5.
Biochemistry ; 61(9): 767-784, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35430812

RESUMEN

The structure of the first ubiquitin-associated domain from HHR23A, UBA(1), was determined by X-ray crystallography at a 1.60 Å resolution, and its stability, folding kinetics, and residual structure under denaturing conditions have been investigated. The concentration dependence of thermal denaturation and size-exclusion chromatography indicate that UBA(1) is monomeric. Guanidine hydrochloride (GdnHCl) denaturation experiments reveal that the unfolding free energy, ΔGu°'(H2O), of UBA(1) is 2.4 kcal mol-1. Stopped-flow folding kinetics indicates sub-millisecond folding with only proline isomerization phases detectable at 25 °C. The full folding kinetics are observable at 4 °C, yielding a folding rate constant, kf, in the absence of a denaturant of 13,000 s-1 and a Tanford ß-value of 0.80, consistent with a compact transition state. Evaluation of the secondary structure via circular dichroism shows that the residual helical structure in the denatured state is replaced by polyproline II structure as the GdnHCl concentration increases. Analysis of NMR secondary chemical shifts for backbone 15NH, 13CO, and 13Cα atoms between 4 and 7 M GdnHCl shows three islands of residual helical secondary structure that align in sequence with the three native-state helices. Extrapolation of the NMR data to 0 M GdnHCl demonstrates that helical structure would populate to 17-33% in the denatured state under folding conditions. Comparison with NMR data for a peptide corresponding to helix 1 indicates that this helix is stabilized by transient tertiary interactions in the denatured state of UBA(1). The high helical content in the denatured state, which is enhanced by transient tertiary interactions, suggests a diffusion-collision folding mechanism.


Asunto(s)
Reparación del ADN , Pliegue de Proteína , Dicroismo Circular , ADN , Guanidina/química , Humanos , Cinética , Desnaturalización Proteica , Termodinámica
6.
Structure ; 27(7): 1137-1147.e5, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31155309

RESUMEN

Ric-8A is a 530-amino acid cytoplasmic molecular chaperone and guanine nucleotide exchange factor (GEF) for i, q, and 12/13 classes of heterortrimeric G protein alpha subunits (Gα). We report the 2.2-Å crystal structure of the Ric-8A Gα-binding domain with GEF activity, residues 1-452, and is phosphorylated at Ser435 and Thr440. Residues 1-429 adopt a superhelical fold comprised of Armadillo (ARM) and HEAT repeats, and the C terminus is disordered. One of the phosphorylated residues potentially binds to a basic cluster in an ARM motif. Amino acid sequence conservation and published hydrogen-deuterium exchange data indicate repeats 3 through 6 to be a putative Gα-binding surface. Normal mode modeling of small-angle X-ray scattering data indicates that phosphorylation induces relative rotation between repeats 1-4, 5-6, and 7-9. 2D 1H-15N-TROSY spectra of [2H,15N]-labeled Gαi1 in the presence of R452 reveals chemical shift perturbations of the C terminus and Gαi1 residues involved in nucleotide binding.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Factores de Intercambio de Guanina Nucleótido/química , Proteínas Nucleares/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
Elife ; 52016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008853

RESUMEN

Cytosolic Ric-8A has guanine nucleotide exchange factor (GEF) activity and is a chaperone for several classes of heterotrimeric G protein α subunits in vertebrates. Using Hydrogen-Deuterium Exchange-Mass Spectrometry (HDX-MS) we show that Ric-8A disrupts the secondary structure of the Gα Ras-like domain that girds the guanine nucleotide-binding site, and destabilizes the interface between the Gαi1 Ras and helical domains, allowing domain separation and nucleotide release. These changes are largely reversed upon binding GTP and dissociation of Ric-8A. HDX-MS identifies a potential Gα interaction site in Ric-8A. Alanine scanning reveals residues crucial for GEF activity within that sequence. HDX confirms that, like G protein-coupled receptors (GPCRs), Ric-8A binds the C-terminus of Gα. In contrast to GPCRs, Ric-8A interacts with Switches I and II of Gα and possibly at the Gα domain interface. These extensive interactions provide both allosteric and direct catalysis of GDP unbinding and release and GTP binding.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo , Animales , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Espectrometría de Masas , Conformación Proteica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...