Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 8(12)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766615

RESUMEN

The allocation of net primary production (NPP) between above- and belowground components is a key step of ecosystem material cycling and energy flows, which determines many critical parameters, e.g., the fraction of below ground NPP (BNPP) to NPP (fBNPP) and root turnover rates (RTR), in vegetation models. However, direct NPP estimation and partition are scarcely based on field measurements of biomass dynamics in the alpine grasslands on the Northern Tibetan Plateau (NTP). Consequently, these parameters are unverifiable and controversial. Here, we measured above- and belowground biomass dynamics (monthly from May to September each year from 2013 to 2015) to estimate NPP dynamics and allocations in four typical alpine grassland ecosystems, i.e., an alpine meadow, alpine meadow steppe, alpine steppe and alpine desert steppe. We found that NPP and its components, above and below ground NPP (ANPP and BNPP), increased significantly from west to east on the NTP, and ANPP was mainly affected by temperature while BNPP and NPP were mainly affected by precipitation. The bulk of BNPP was generally concentrated in the top 10 cm soil layers in all four alpine grasslands (76.1% ± 9.1%, mean ± SD). Our results showed that fBNPP was significantly different among these four alpine grasslands, with its means in alpine meadow (0.93), alpine desert steppe (0.92) being larger than that in the alpine meadow steppe (0.76) and alpine steppe (0.77). Both temperature and precipitation had significant and positive effects on the fBNPP, while their interaction effects were significantly opposite. RTR decreased with increasing precipitation, but increased with increasing temperature across this ecoregion. Our study illustrated that alpine grasslands on the NTP, especially in the alpine meadow and alpine desert steppe, partitioned an unexpected and greater NPP to below ground than most historical reports across global grasslands, indicating a more critical role of the root carbon pool in carbon cycling in alpine grasslands on the NTP.

2.
PLoS One ; 10(8): e0135173, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26284515

RESUMEN

Biomass allocation is an essential concept for understanding above- vs. below-ground functions and for predicting the dynamics of community structure and ecosystem service under ongoing climate change. There is rare available knowledge of grazing effects on biomass allocation in multiple zonal alpine grassland types along climatic gradients across the Northern Tibetan Plateau. We collected the peak above- and below-ground biomass (AGB and BGB) values at 106 pairs of well-matched grazed vs. fenced sites during summers of 2010-2013, of which 33 pairs were subject to meadow, 52 to steppe and 21 to desert-steppe. The aboveground net primary productivity (ANPP) was represented by the peak AGB while the belowground net primary productivity (BNPP) was estimated from ANPP, the ratio of living vs. dead BGB, and the root turnover rate. Two-ways analyses of variance (ANOVA) and paired samples comparisons with t-test were applied to examine the effects of pasture managements (PMS, i.e., grazed vs. fenced) and zonal grassland types on both ANPP and BNPP. Allometric and isometric allocation hypotheses were also tested between logarithmically transformed ANPP and BNPP using standardized major axis (SMA) analyses across grazed, fenced and overall sites. In our study, a high community-dependency was observed to support the allometric biomass allocation hypothesis, in association with decreased ANPP and a decreasing-to-increasing BNPP proportions with increasing aridity across the Northern Tibetan Plateau. Grazing vs. fencing seemed to have a trivial effect on ANPP compared to the overwhelming influence of different zonal grassland types. Vegetation links above- and below-ground ecological functions through integrated meta-population adaptive strategies to the increasing severity of habitat conditions. Therefore, more detailed studies on functional diversity are essentially to achieve conservation and sustainability goals under ongoing climatic warming and intensifying human influences.


Asunto(s)
Biomasa , Pradera , Cambio Climático , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...