Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752656

RESUMEN

Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices. The present work aims to develop a facile method by covalently grafting zwitterionic and cationic copolymers containing aldehydes to the remaining amine groups of self-polymerized dopamine. Reversible addition-fragmentation chain transfer polymerization was used to copolymerize either zwitterionic 2-methacryloyloxyethyl phosphorylcholine monomer (MPC) or cationic 2-(methacryloyloxy)ethyl trimethylammonium monomer (META) with 4-formyl phenyl methacrylate monomer (FPMA), and the formed copolymers poly(MPC-st-FPMA) and poly(META-st-FPMA) are denoted as MPF and MTF, respectively. MPF and MTF copolymers were then covalently grafted onto the amino groups of polydopamine-coated surfaces. PDA/MPF/MTF-coated surfaces exhibited antibacterial and antifouling properties against S. aureus, E. coli, and bovine serum albumin protein. In addition, they showed excellent viability of normal human lung fibroblast cells MRC-5. We expect the facile surface modification strategy discussed here to be applicable to medical device manufacturing.

2.
Int Urol Nephrol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564076

RESUMEN

BACKGROUND: This research aimed to explore the association between changes in the intake of common individual vitamins and combinations of vitamins and the prevalence of kidney calculi. METHODS: We used data from NHANES to investigate the association between nine common vitamins and kidney stone prevalence. Participants were clustered into several vitamin exposure patterns using an unsupervised K-means clustering method. We used logistic regression models and restrictive cubic spline curves to explore the influence of vitamins. RESULTS: The regression model exposed that compared to lower intake, high intake of vitamin B6 [Q4: OR (95% CI) = 0.76 (0.62, 0.93)], vitamin C [Q4: OR (95% CI) = 0.73 (0.59, 0.90)] and vitamin D [Q4: OR (95% CI) = 0.77 (0.64, 0.94)] individually exerted protective effects against the prevalence of kidney stones. Furthermore, the restrictive cubic spline analysis showed that the protective effect against the prevalence of kidney stones is enhanced as the take of vitamin B6 and vitamin D increased. Moreover, with the increase in vitamin C intake, its protective effect may turn into a risk factor. Regarding mixed exposure, Cluster 4 exhibited a significant protective effect against kidney stones compared with Cluster 1 [Model 3: OR (95% CI) = 0.79 (0.64, 0.98)]. CONCLUSIONS: Our research revealed that high levels of vitamin B6 and vitamin D intake were linked to a lower prevalence of kidney stone. With the gradual increase intake of vitamin C, the prevalence of kidney calculi decreased first and then increased. In addition, the co-exposure of nine vitamins is a protective factor for kidney stone disease.

3.
J Colloid Interface Sci ; 666: 393-402, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603881

RESUMEN

Humic acids (HA) are ubiquitous in surface waters, leading to significant fouling challenges. While zwitterion-like and zwitterionic surfaces have emerged as promising candidates for antifouling, a quantitative understanding of molecular interaction mechanism, particularly at the nanoscale, still remains elusive. In this work, the intermolecular forces between HA and charged, zwitterion-like or zwitterionic monolayers in aqueous environments were quantified using atomic force microscope. Compared to cationic MTAC ([2-(methacryloyloxy)ethyl]trimethylammonium chloride), which exhibited an adhesion energy of âˆ¼1.342 mJ/m2 with HA due to the synergistic effect of electrostatic attraction and possible cation-π interaction, anionic SPMA (3-sulfopropyl methacrylate) showed a weaker adhesion energy (∼0.258 mJ/m2) attributed to the electrostatic repulsion. Zwitterion-like MTAC/SPMA mixture, driven by electrostatic attraction between opposite charges, formed a hydration layer that prevented the interaction with HA, thereby considerably reducing adhesion energy to âˆ¼0.123 mJ/m2. In contrast, zwitterionic MPC (2-methacryloyloxyethyl phosphorylcholine) and DMAPS ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) displayed ultralow adhesion energy (0.06-0.07 mJ/m2) with HA, arising from their strong dipole moments which could induce a tight hydration layer that effectively inhibited HA fouling. The pH-mediated electrostatic interaction resulted in the increased adhesion energy for MTAC but decreased adhesion energy for SPMA with elevated pH, while the adhesion energy for zwitterion-like and zwitterionic surfaces was independent of environmental pH. Density functional theory (DFT) simulation confirmed the strong binding capability of MPC and DMAPS with water molecules (∼-12 kcal mol-1). This work provides valuable insights into the molecular interaction mechanisms underlying humic-substance-fouling resistance of charged, zwitterion-like and zwitterionic materials at the nanoscale, shedding light on developing more effective strategy for HA antifouling in water treatment.

4.
Sci Total Environ ; 930: 172347, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38614332

RESUMEN

Nanoemulsions play a crucial role in various industries. However, their application often results in hazardous waste, posing significant risks to human health and the environment. Effective management and separation of waste nanoemulsions requires special attention and effort. This review provides a comprehensive understanding of waste nanoemulsions, covering their sources, characteristics, and suitable treatment technologies, intending to mitigate their environmental impact. This study examines the evolution of nanoemulsions from beneficial products to hazardous wastes, provides an overview of the production processes, fate, and hazards of waste nanoemulsions, and highlights the critical characteristics that affect their stability. The latest advancements in separating waste nanoemulsions for recovering oil and reusable water resources are also presented, providing a comprehensive comparison and evaluation of the current treatment techniques. This review addresses the significant challenges in nanoemulsion treatment, provides insights into future research directions, and offers valuable implications for the development of more effective strategies to mitigate the hazards associated with waste nanoemulsions.

5.
J Hazard Mater ; 469: 134101, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522196

RESUMEN

CO2-responsive materials have emerged as promising adsorbents for the remediation of refractory organic dyes-contaminated wastewater without the formation of byproducts or causing secondary pollution. However, realizing the simultaneous adsorption-separation or complete removal of both anionic and cationic dyes, as well as achieving deeper insights into their adsorption mechanism, still remains a challenge for most reported CO2-responsive materials. Herein, a novel type of urchin-like CO2-responsive Fe3O4 microspheres (U-Fe3O4 @P) has been successfully fabricated to enable ultrafast, selective, and reversible adsorption of anionic dyes by utilizing CO2 as a triggering gas. Meanwhile, the CO2-responsive U-Fe3O4 @P microspheres exhibit the capability to initiate Fenton degradation of non-adsorbable cationic dyes. Our findings reveal exceptionally rapid adsorption equilibrium, achieved within a mere 5 min, and an outstanding maximum adsorption capacity of 561.2 mg g-1 for anionic dye methyl orange upon CO2 stimulation. Moreover, 99.8% of cationic dye methylene blue can be effectively degraded through the Fenton reaction. Furthermore, the long-term unresolved interaction mechanism of organic dyes with CO2-responsive materials is deciphered through a comprehensive experimental and theoretical study by density functional theory. This work provides a novel paradigm and guidance for designing next-generation eco-friendly CO2-responsive materials for highly efficient purification of complex dye-contaminated wastewater in environmental engineering.

6.
Langmuir ; 40(10): 5444-5454, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427794

RESUMEN

Historically, research on silicotungstic-acid-based hydrogels has primarily focused on their adhesive properties, often at the expense of mechanical strength (cohesion). In this study, we present a novel approach to fabricate a polysaccharide hydrogel that harmoniously balances both adhesion and cohesion via interfacial hydrogen bonds. This hydrogel, composed of carboxymethyl cellulose (CMC), polyacrylamide (PAM), silicotungstic acid (SiW), and lithium chloride (LiCl), showcases a unique combination of properties: strain-responsive ionic conductivity, superior transparency, remarkable stretchability, and robust adhesion. Contrary to conventional PAM hydrogels, our PAM-SiW networked hydrogel addresses the common challenge of achieving good adhesion without compromising on cohesion. Specifically, our hydrogel demonstrates a maximum toughness of 20.3 MJ/m3 and a strain of 4079%, an accomplishment rarely observed in other adhesive hydrogel. Furthermore, the hydrogel's adhesion is both reversible and versatile, adhering effectively to a variety of wet and dry substrates. This makes it a promising candidate for advanced healthcare applications, particularly as a mechanically reinforced underwater adhesive with unparalleled stability. We also provide insights into the role of LiCl in the hydrogel matrix, emphasizing its influence on electrostatic interactions without affecting the hydrogen bonds. This study serves as a testament to the potential of harmonizing adhesive and cohesive properties in hydrogels, paving the way for future innovations in the field.

7.
Heart Lung ; 65: 84-92, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38447328

RESUMEN

BACKGROUND: The occurrence of chronic obstructive pulmonary disease (COPD) is associated with oxidative stress. Oxidation Balance Score (OBS) can evaluate the oxidation and antioxidant status of the body. However, we found no studies that examined the association between the two. OBJECTIVE: To assess the association between OBS and COPD prevalence, and to explore dietary and lifestyle patterns aimed at preventing and delay COPD in adults. METHOD: We included 13,909 participants using data from the NHANES. Weighted logistic regression model and weighted restricted cubic spline curve were used to explore the relationship between OBS and COPD. Subgroup analysis and sensitivity analysis were used to determine the stability of results. Mediation analysis was employed to assess the effect of inflammatory factors. RESULT: In logistic regression model, compared with the lowest quartile of OBS, the highest quartile of OBS, diet OBS, lifestyle OBS and COPD had odd ratios OR(95%CI)=0.67 (0.51, 0.89), OR (95% CI) = 0.71 (0.55, 0.93), and OR (95% CI) = 0.39 (0.26, 0.58) respectively. The restricted cubic spline curve reveals that OBS and dietary OBS exhibit an L-shaped curve in relation to COPD prevalence, while lifestyle OBS shows a negative correlation curve with COPD prevalence. Subgroup analysis and sensitivity analysis proved the robustness of the association. Mediation analysis demonstrated that inflammatory factors mediate the association of OBS on the prevalence of COPD. CONCLUSION: The increase of OBS, dietary OBS, and lifestyle OBS was associated with a decrease in the prevalence of COPD, but excessive OBS and dietary OBS were associated with an inapparent decrease or even increased risk of COPD.


Asunto(s)
Antioxidantes , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Estudios Transversales , Encuestas Nutricionales , Prevalencia , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
8.
Mol Med ; 30(1): 41, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519941

RESUMEN

BACKGROUND: Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS: Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS: In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION: The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.


Asunto(s)
Hiperplasia Prostática , Humanos , Masculino , Ratones , Animales , Anciano , Hiperplasia Prostática/genética , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Factor de Necrosis Tumoral alfa , Extractos Vegetales/farmacología , Próstata/metabolismo , Próstata/patología , Inflamación/patología
9.
Langmuir ; 40(11): 5992-6003, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38445586

RESUMEN

When the electric field strength (E) surpasses a certain threshold, secondary droplets are generated during the coalescence between water droplets in oil and the oil-water interface (so-called the droplet-interface partial coalescence phenomenon), resulting in a lower efficiency of droplet electrocoalescence. This study employs molecular dynamics (MD) simulations to investigate the droplet-interface partial coalescence phenomenon under direct current (DC) electric fields. The results demonstrate that intermolecular interactions, particularly the formation of hydrogen bonds, play a crucial role in dipole-dipole coalescence. Droplet-interface partial coalescence is categorized into five regimes based on droplet morphology. During the contact and fusion of the droplet with the water layer, the dipole moment of the droplet exhibits alternating increases and decreases along the electric field direction. Electric field forces acting on sodium ions and the internal interactions within droplets promote the process of droplet-interface partial coalescence. High field strengths cause significant elongation of the droplet, leading to its fragmentation into multiple segments. The migration of hydrated ions has a dual impact on the droplet-interface partial coalescence, with both facilitative and suppressive effects. The time required for droplet-interface partial coalescence initially decreases and subsequently increases as the field strength increases, depending on the competitive relationship between the extent of droplet stretching and the electric field force. This work provides molecular insights into the droplet-interface coalescence mechanisms in water-in-oil emulsions under DC electric fields.

10.
J Environ Manage ; 354: 120342, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382431

RESUMEN

In this work, ultraviolet irradiation was employed to assist in the preparation of a novel photocatalyst composite in the form of carbon dots/zeolite-4A/TiO2, using coal tailings as the source of silicon-aluminum and carbon. The composite was designed for the degradation of methylene blue under 500 W of UV light irradiation. Zeolite-4A was used as a support for the well-dispersed carbon dots and TiO2 nanoparticles. The as-prepared composites were subjected to thorough characterization, confirming the successful formation of zeolite-4A with a cube structure, along with the loading of TiO2 and coal-based CDs in the composites. The experimental results demonstrated that the UV-CZTs nanocomposites exhibited a remarkable removal efficiency of 90.63% within 90 min for MB. The corresponding rate constant was exceptionally high at 0.0331 min-1, surpassing that of the Dark-CZTs and pure TiO2. This significant enhancement was possibly due to the synergistic effect of adsorption photocatalysis of the UV-CZTs, combined with the excellent electron-accepting capabilities of the coal-based CDs, which led to highly improved charge separation. An investigation of the spent photocatalyst's recyclability revealed that it retained a remarkable 82.94% MB removal efficiency after five consecutive cycles, signifying the stability of the composite. Trapping experiments also elucidated the primary reactive species responsible for MB degradation, which were identified as photo-generated holes and ⸱O2- species. By this process, the hydroxyl radicals generated in the system successfully promoted the transformation of coal tailings to coal-based zeolite and coal-based CDs. Coal-based zeolite served as an excellent carrier of titanium dioxide, which improved its dispersibility. The inhibition of e--h+ recombination of titanium dioxide by introducing coal-based CDs improved the photocatalytic ability of titanium dioxide. Through this study, coal tailings, as a coal processing waste, were transformed into high-value materials, and relevant photocatalytic composite materials could be prepared with broad application prospects.


Asunto(s)
Rayos Ultravioleta , Zeolitas , Colorantes , Zeolitas/química , Titanio/química , Carbón Mineral , Carbono , Catálisis
11.
Adv Mater ; 36(21): e2313211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38339916

RESUMEN

Biocompatible magnesium alloys represent revolutionary implantable materials in dentistry and orthopedics but face challenges due to rapid biocorrosion, necessitating protective coatings to mitigate dysfunction. Directly integrating durable protective coatings onto Mg surfaces is challenging because of intrinsic low coating compactness. Herein, inspired by tooth enamel, a novel highly compact dual-protection inorganic-protein (inorganicPro) coating is in situ constructed on Mg surfaces through bovine serum albumin (BSA) protein-boosted reaction between sodium fluoride (NaF) and Mg substrates. The association of Mg ions and BSA establishes a local hydrophobic domain that lowers the formation enthalpy of NaMgF3 nanoparticles. This process generates finer nanoparticles that function as "bricks," facilitating denser packing, consequently reducing voidage inside coatings by over 50% and reinforcing mechanical durability. Moreover, the incorporation of BSA in and on the coatings plays two synergistic roles: 1) acting as "mortar" to seal residual cracks within coatings, thereby promoting coating compactness and tripling anticorrosion performance, and 2) mitigating fouling-accelerated biocorrosion in complex biosystems via tenfold resistance against biofoulant attachments, including biofluids, proteins, and metabolites. This innovative strategy, leveraging proteins to alter inorganic reactions, benefits the future coating design for Mg-based and other metallic materials with tailored anticorrosion and antifouling performances.


Asunto(s)
Biomineralización , Materiales Biocompatibles Revestidos , Magnesio , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Biomineralización/efectos de los fármacos , Magnesio/química , Animales , Bovinos , Esmalte Dental/química , Esmalte Dental/efectos de los fármacos , Fluoruro de Sodio/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Corrosión , Propiedades de Superficie
12.
Langmuir ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38330259

RESUMEN

The prevention of biofilm formation on medical devices has become highly challenging in recent years due to its resistance to bactericidal agents and antibiotics, ultimately resulting in chronic infections to medical devices. Therefore, developing inexpensive, biocompatible, and covalently bonded coatings to combat biofilm formation is in high demand. Herein, we report a coating fabricated from tannic acid (TA) as an adhesive and a reducing agent to graft the zwitterionic polymer covalently in a one-step method. Subsequently, silver nanoparticles (AgNPs) are generated in situ to develop a coating with antifouling and antibacterial properties. To enhance the antifouling property and biocompatibility of the coating, the bioinspired zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized with 2-aminoethyl methacrylamide hydrochloride (AEMA) using conventional free-radical polymerization. AEMA moieties containing amino groups were used to facilitate the conjugation of the copolymer with quinone groups on TA through the Michael addition reaction. Three copolymers with different ratios of monomers were synthesized to understand their impacts on fouling resistance: PMPC100, p(MPC80-st-AEMA20), and p(MPC90-st-AEMA10). To impart antibacterial properties to the surface, AgNPs were formed in situ, utilizing the unreacted quinone groups on TA, which can reduce the silver ions. The successful coating of TA and copolymer onto the surfaces was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and its excellent wettability was verified by the water contact angle (CA). Furthermore, the functionalized coatings showed antibacterial properties against E. coli and S. aureus and remarkably decreased the adhesion of the BSA protein. The surfaces can also prevent the adhesion of bacteria cells, as confirmed by the inhibition zone test. In addition, they showed negligible cytotoxicity to normal human lung fibroblast cells (MRC-5). The as-prepared coatings are potentially valuable for biomedical applications.

13.
Nanomicro Lett ; 16(1): 96, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270675

RESUMEN

The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions. Regulating the electrical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes. Herein, we report an ultrathin zincophilic ZnS layer as a model regulator. At a given cycling current, the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer (stern layer) and a suppressed diffuse layer, indicating the regulated charge distribution and decreased electric double layer repulsion force. Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance. Consequently, the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm-2 with a lower overpotential of 25 mV. When coupled with an I2/AC cathode, the cell demonstrates a high rate performance of 160 mAh g-1 at 0.1 A g-1 and long cycling stability of over 10,000 cycles at 10 A g-1. The Zn||MnO2 also sustains both high capacity and long cycling stability of 130 mAh g-1 after 1,200 cycles at 0.5 A g-1.

14.
Environ Sci Technol ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247403

RESUMEN

The mobility and distribution of heavy metal ions (HMs) in aquatic environments are significantly influenced by humic acid (HA), which is ubiquitous. A quantitative understanding of the interaction mechanism underlying the adsorption and retention of HMs by HA is of vital significance but remains elusive. Herein, the interaction mechanism between HA and different types of HMs (i.e., Cd(II), Pb(II), arsenate, and chromate) was quantitatively investigated at the nanoscale. Based on quartz crystal microbalance with dissipation tests, the adsorption capacities of Pb(II), Cd(II), As(V), and Cr(VI) ionic species on the HA surface were measured as ∼0.40, ∼0.25, ∼0.12, and ∼0.02 nmol cm-2, respectively. Atomic force microscopy force results showed that the presence of Pb(II)/Cd(II) cations suppressed the electrostatic double-layer repulsion during the approach of two HA surfaces and the adhesion energy during separation was considerably enhanced from ∼2.18 to ∼5.05/∼4.18 mJ m-2. Such strong adhesion stems from the synergistic metal-HA complexation and cation-π interaction, as evidenced by spectroscopic analysis and theoretical simulation. In contrast, As(V)/Cr(VI) oxo-anions could form only weak hydrogen bonds with HA, resulting in similar adhesion energies for HA-HA (∼2.18 mJ m-2) and HA-As(V)/Cr(VI)-HA systems (∼2.26/∼1.96 mJ m-2). This work provides nanoscale insights into quantitative HM-HA interactions, improving the understanding of HMs biogeochemical cycling.

15.
ACS Nano ; 18(4): 3002-3010, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227309

RESUMEN

Silver cations can mediate base pairing of guanine (G) DNA oligomers, yielding linear parallel G-Ag+-G duplexes with enhanced stabilities compared to those of canonical DNA duplexes. To enable their use in programmable DNA nanotechnologies, it is critical to understand solution-state formation and the nanomechanical stiffness of G-Ag+-G duplexes. Using temperature-controlled circular dichroism (CD) spectroscopy, we find that heating mixtures of G oligomers and silver salt above 50 °C fully destabilizes G-quadruplex structures and converts oligomers to G-Ag+-G duplexes. Electrospray ionization mass spectrometry supports that G-Ag+-G duplexes form at stoichiometries of 1 Ag+ per base pair, and CD spectroscopy suggests that as the Ag+/base stoichiometry increases further, G-Ag+-G duplexes undergo additional morphological changes. Using liquid-phase atomic force microscopy, we find that this excess Ag+ enables assembly of long fiberlike structures with ∼2.5 nm heights equivalent to a single DNA duplex but with lengths that far exceed a single duplex. Finally, using the conditions established to form single G-Ag+-G duplexes, we use a surface forces apparatus (SFA) to compare the solution-phase stiffness of single G-Ag+-G duplexes with dG-dC Watson-Crick-Franklin duplexes. SFA shows that G-Ag+-G duplexes are 1.3 times stiffer than dG-dC duplexes, confirming gas-phase ion mobility spectrometry measurements and computational predictions. These findings may guide the development of structural DNA nanotechnologies that rely on silver-mediated base pairing.


Asunto(s)
Guanina , Plata , Guanina/química , Plata/química , ADN/química , Emparejamiento Base , Temperatura , Conformación de Ácido Nucleico
16.
J Mater Chem B ; 12(2): 332-349, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37987037

RESUMEN

Hydrogels with three-dimensional structures have been widely applied in various applications because of their tunable structures, which can be easily tailored with desired functionalities. However, the application of hydrogel materials in bioengineering is still constrained by their limited dosage flexibility and the requirement of invasive surgical procedures. Compared to traditional hydrogels, injectable hydrogels, with shear-thinning and/or in situ formation properties, simplify the implantation process and reduce tissue invasion, which can be directly delivered to target sites using a syringe injection, offering distinct advantages over traditional hydrogels. These injectable hydrogels incorporate physically non-covalent and/or dynamic covalent bonds, granting them self-healing abilities to recover their structural integrity after injection. This review summarizes our recent progress in preparing injectable hydrogels and discusses their performance in various bioengineering applications. Moreover, the underlying molecular interaction mechanisms that govern the injectable and functional properties of hydrogels were characterized by using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM). The remaining challenges and future perspectives on the design and application of injectable hydrogels are also discussed. This work provides useful insights and guides future research directions in the field of injectable hydrogels for bioengineering.


Asunto(s)
Hidrogeles , Hidrogeles/química , Inyecciones
17.
J Environ Sci (China) ; 138: 112-120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135380

RESUMEN

Zeolitic Imidazolate Framework-8 (ZIF-8) material was prepared by chemical precipitation method. The microstructure and physical properties of the as-prepared samples were characterized by XRD, BET, FESEM and UV spectrophotometer. The self-made four-channel measurement device was used to test the gas sensitivity of ZIF-8 material toward ethanol gas under photo-thermal synergistic excitation. The results showed that the sample was typical ZIF-8 (Eg = 4.96 eV) with a regular dodecahedron shape and the specific surface is up to 1793 m2/g. The as-prepared ZIF-8 has a gas response value of 55.04 to 100 ppm ethanol at 75°C and it shows good gas sensing selectivity and repeated stability. The excellent gas sensitivity can be attributed to the increase of free electron concentration in the ZIF-8 conduction band by photo-thermal synergistic excitation, and the large specific surface area of ZIF-8 material provides more active sites for gas-solid surface reaction. The reaction mechanism of ZIF-8 material under multi-field excitation was also discussed.


Asunto(s)
Imidazoles , Zeolitas , Temperatura , Zeolitas/química , Frío
18.
Langmuir ; 39(49): 17600-17610, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039395

RESUMEN

Cation-π interaction is one of the most important noncovalent interactions identified in biosystems, which has been proven to play an essential role in the strong adhesion of marine mussels. In addition to the well-known catecholic amino acid, l-3,4-dihydroxyphenylalanine, mussel foot proteins are rich in various aromatic moieties (e.g., tyrosine, phenylalanine, and tryptophan) and cationic residues (e.g., lysine, arginine, and histidine), which favor a series of short-range cation-π interactions with adjustable strengths, serving as a prototype for the development of high-performance underwater adhesives. This work highlights our recent advances in understanding and utilizing cation-π interactions in underwater adhesives, focusing on three aspects: (1) the investigation of the cation-π interaction mechanisms in mussel foot proteins via force-measuring techniques; (2) the modulation of cation-π interactions in mussel mimetic polymers with the variation of cations, anions, and aromatic groups; (3) the design of wet adhesives based on these revealed principles, leading to functional materials in the form of films, coacervates, and hydrogels with biomedical and engineering applications. This review provides valuable insights into the development and optimization of smart materials based on cation-π interactions.


Asunto(s)
Materiales Biomiméticos , Bivalvos , Animales , Materiales Biomiméticos/química , Proteínas/química , Adhesivos/química , Dihidroxifenilalanina/química , Cationes/química , Bivalvos/química
19.
Nat Commun ; 14(1): 6615, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857626

RESUMEN

The pressing crisis of clean water shortage requires membranes to possess effective ion sieving as well as fast water flux. However, effective ion sieving demands reduction of pore size, which inevitably hinders water flux in hydrophilic membranes, posing a major challenge for efficient water/ion separation. Herein, we introduce anomalous water molecular gating based on nanofiltration membranes full of graphene capillaries at 6 Å, which were fabricated from spontaneous π-π restacking of island-on-nanosheet graphitic microstructures. We found that the membrane can provide effective ion sieving by suppressing osmosis-driven ion diffusion to negligible levels (~10-4 mol m-2 h-1); unexpectedly, ultrafast bulk flow of water (45.4 L m-2 h-1) was still functional with ease, as gated on/off by adjusting hydrostatic pressures within only 10-2 bar. We attribute this seemingly incompatible observation to graphene nanoconfinement effect, where crystal-like water confined within the capillaries hinders diffusion under osmosis but facilitates high-speed, diffusion-free water transport in the way analogous to Newton's cradle-like Grotthus conduction. This strategy establishes a type of liquid-solid-liquid, phase-changing molecular transport for precise and ultrafast molecular sieving.

20.
Adv Sci (Weinh) ; 10(35): e2305239, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875393

RESUMEN

Janus membranes with asymmetric wettability have been considered cutting-edge for energy/environmental-sustainable applications like water/fog harvester, breathable skin, and smart sensor; however, technical challenges in fabrication and accurate regulation of asymmetric wettability limit their development. Herein, by using water-assisted hydrogen-bonded (H-bonded) assembly of small molecules at water/oil interface, a facile strategy is proposed for one-step fabrication of membranes with well-regulable asymmetric wettability. Asymmetric orderly patterns, beneficial for mass transport based on abundant high-permeability sites and large surface area, are constructed on opposite membrane surfaces. Upon tuning water-assisted H-bonding via H-sites/configuration design and temperature/pH modulation, double-hydrophobic, double-hydrophilic, and hydrophobic-hydrophilic membranes are facilely fabricated. The Janus membranes show smart vapor-responsive curling and unidirectional water transport with promising flux of 1158±25 L m-2  h-1 under natural gravity and 31500±670 L·(m-2  h-1  bar-1 ) at negative pressure. This bottom-up approach offers a feasible-to-scalable avenue to precise-manipulation of Janus membranes for advanced applications, providing an effective pathway for developing tailor-made self-assembled nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...