Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Sci (China) ; 144: 100-112, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38802223

RESUMEN

The abandoned smelters present a substantial pollution threat to the nearby soil and groundwater. In this study, 63 surface soil samples were collected from a zinc smelter to quantitatively describe the pollution characteristics, ecological risks, and source apportionment of heavy metal(loid)s (HMs). The results revealed that the average contents of Zn, Cd, Pb, As, and Hg were 0.4, 12.2, 3.3, 5.3, and 12.7 times higher than the risk screening values of the construction sites, respectively. Notably, the smelter was accumulated heavily with Cd and Hg, and the contribution of Cd (0.38) and Hg (0.53) to ecological risk was 91.58%. ZZ3 and ZZ7 were the most polluted workshops, accounting for 25.7% and 35.0% of the pollution load and ecological risk, respectively. The influence of soil parent materials on pollution was minor compared to various workshops within the smelter. Combined with PMF, APCS-MLR and GIS analysis, four sources of HMs were identified: P1(25.5%) and A3(18.4%) were atmospheric deposition from the electric defogging workshop and surface runoff from the smelter; P2(32.7%) and A2(20.9%) were surface runoff of As-Pb foul acid; P3(14.5%) and A4(49.8%) were atmospheric deposition from the leach slag drying workshop; P4(27.3%) and A1(10.8%) were the smelting process of zinc products. This paper described the distribution characteristics and specific sources of HMs in different process workshops, providing a new perspective for the precise remediation of the smelter by determining the priority control factors.


Asunto(s)
Monitoreo del Ambiente , Metalurgia , Metales Pesados , Contaminantes del Suelo , Zinc , Metales Pesados/análisis , Zinc/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Sistemas de Información Geográfica , Modelos Químicos
2.
Environ Pollut ; 341: 122939, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37981182

RESUMEN

Groundwater pollution is a recurrent problem in abandoned non-ferrous metal smelting sites, and its severity is influenced by topsoil contamination, hydrogeological characteristics, and hydrogeochemical conditions. In such unique areas, traditional methods for evaluating groundwater pollution risk are biased, as the long production history of these sites have led to highly polluted and heterogeneous soil and groundwater. Herein, based on a typical lead-zinc smelting site, As, Pb, Zn, Cd, Mn, and Ni were found to be the predominant heavy metal (loid)s in groundwater, with respective exceedance rates of 44.4%, 50.0%, 72.2%, 88.9%, 88.9%, and 61.1%. Combined with the groundwater pollution characteristics, the representative hydrogeochemical factors were screened out to optimize the following aquifer vulnerability evaluation using the AHP-DRASTICH method. A comprehensive evaluation model (DI-NCPI) for groundwater pollution risk was established by combining the DRASTICH index (DI) obtained after optimization and the Nemerow comprehensive contamination index (NCPI) of topsoil. The fit between DI-NCPI and groundwater heavy metal (loid) pollution index reached 0.956, which laterally confirms that the model has some reference value. In terms of distribution, the high-risk and very high-risk zones were mainly concentrated in the zinc smelting system, located in the southeastern and central-western parts of the site. These areas have relatively high levels of topsoil contamination and aquifer vulnerability and require focused attention in site remediation. This research highlights the importance of combining topsoil contamination and aquifer vulnerability to evaluate groundwater pollution risk in smelting areas. It provides a more targeted reference for groundwater remediation strategies in abandoned smelting sites, as well as severely polluted industrial areas.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Zinc/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , Metales Pesados/análisis , Suelo , China
3.
J Environ Sci (China) ; 139: 1-11, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105037

RESUMEN

The lack of understanding of heavy metal speciation and solubility control mechanisms in smelting soils limits the effective pollution control. In this study smelting soils were investigated by an advanced mineralogical analysis (AMICS), leaching tests and thermodynamic modelling. The aims were to identify the partitioning and release behaviour of Pb, Zn, Cd and As. The integration of multiple techniques was necessary and displayed coherent results. In addition to the residual fraction, Pb and Zn were predominantly associated with reducible fractions, and As primarily existed as the crystalline iron oxide-bound fractions. AMICS quantitative analysis further confirmed that Fe oxyhydroxides were the common dominant phase for As, Cd, Pb and Zn. In addition, a metal arsenate (paulmooreite) was an important mineral host for Pb and As. The pH-stat leaching indicted that the release of Pb, Zn and Cd increased towards low pH values while release of As increased towards high pH values. The separate leaching schemes were associated with the geochemical behaviour under the control of minerals and were confirmed by thermodynamic modelling. PHREEQC calculations suggested that the formation of arsenate minerals (schultenite, mimetite and koritnigite) and the binding to Fe oxyhydroxides synchronously controlled the release of Pb, Zn, Cd and As. Our results emphasized the governing role of Fe oxyhydroxides and secondary insoluble minerals in natural attenuation of heavy metals, which provides a novelty strategy for the stabilization of multi-metals in smelting sites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Zinc/análisis , Arseniatos , Plomo/análisis , Cadmio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Minerales , China
4.
J Hazard Mater ; 453: 131377, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054642

RESUMEN

Smelting activities have a far-reaching influence on the quality of soil and groundwater, while most studies have neglected the information on the pollution characteristics of groundwater. The hydrochemical parameters of shallow groundwater and the spatial distributions of toxic elements were investigated in this study. Correlations analysis and groundwater evolution revealed that the major ions were primarily determined by silicate weathering and calcite dissolution process, and anthropogenic processes had a significant effect on groundwater hydrochemistry. Almost 79%, 71%, 57%, 89%, 100%, and 78.6% of samples exceeded the standards of Cd, Zn, Pb, As, SO42-, and NO3-, and their distribution is closely related to the production process. Analysis of soil geochemistry indicated that the relatively mobile forms of toxic elements strongly influence the origin and concentration in shallow groundwater. Besides, rainfall with high magnitude would lead to a decrease of toxic elements in shallow groundwater, whereas the area once stacked waste residue was the opposite. It is recommended to strengthen risk management of the limited mobility fraction while devising a plan for waste residue treatment in accordance with the local pollution conditions. The research on controlling the mechanism of toxic elements in shallow groundwater, along with sustainable development in the study area and other smelting zones may benefit from this study.

5.
Sci Total Environ ; 868: 161708, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36682559

RESUMEN

The prevalent pH rebound phenomenon in the bauxite residue alkalinity regulation is primarily caused by the presence of alkaline minerals, including sodalite and cancrinite. Calcium ion is widely used to remove the free alkali for reducing the alkalinity of bauxite residue, but its underlying mechanism on alkaline minerals is still unclear. In this work, we investigated the action mechanism of calcium ion on sodalite and cancrinite by various microspectroscopic methods, and then employed spin-polarized density functional theory (DFT) calculations to reveal the reaction pathways of calcium ion substitution and migration in minerals. The calcium ion can effectively regulate the stability of alkaline minerals by inhibiting alkaline ions release, which respectively enters sodalite and cancrinite by displacing Na adsorbed inside the mineral lattice and on the mineral surface. The entered calcium ion acts as competitive protection against sodium during the neutralization process, thus inhibiting the proton-promoted dissolution of sodalite and cancrinite. Moreover, the amount of entry calcium ion controls their acid neutralization ability. DFT calculations revealed calcium ions readily replaced sodium on the internal channels of minerals rather than on the surface. These new findings contribute to the understanding of potential options to directly stabilize critical alkaline components in bauxite residue.

6.
J Environ Sci (China) ; 127: 552-563, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522085

RESUMEN

Smelting activities are the main pathway for the anthropogenic release of heavy metals (HMs) into the soil-groundwater environment. It is vital to identify the factors affecting HMs pollution to better prevent and manage soil pollution. The present study conducted a comprehensive investigation of HMs in soil from a large abandoned Zn smelting site. An integrated approach was proposed to classify and quantify the factors affecting HMs pollution in the site. Besides, the quantitative relationship between hydrogeological characteristics, pollution transmission pathways, smelting activities and HMs pollution was established. Results showed that the soils were highly contaminated by HMs with a pollution index trend of As > Zn > Cd > Pb > Hg. In identifying the pollution hotspots, we conclude that the pollution hotspots of Pb, As, Cd, and Hg present a concentrated distribution pattern. Geo-detector method results showed that the dominant driving factors for HMs distribution and accumulation were the potential pollution source and soil permeability. Additionally, the main drivers are variable for different HMs, and the interaction among factors also enhanced soil HMs contamination. Our analysis illustrates how the confounding influences from complex environmental factors can be distilled to identify key factors in pollution formation to guide future remediation strategies.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Cadmio , Plomo , Monitoreo del Ambiente/métodos , Medición de Riesgo , Metales Pesados/análisis , Suelo , Contaminación Ambiental , China
7.
Financ Res Lett ; 49: 103166, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36060547

RESUMEN

Given the lack of activity in China's offline economy during the COVID-19 quarantine period, online prices provide new insights for analyzing the impacts of the pandemic on the economy. Using online prices from 107 websites in China and the DiD method to remove the Spring Festival effect, we show that the pandemic leads to a 0.4% surge in the overall inflation rate, a 20% decrease in the price change probability, and a 1% decline in the size of absolute price changes. Moreover, the pandemic had heterogeneous impacts on different sectors, leading to significant structural changes in inflation. Specifically, the pandemic hindered the price correction behavior after Spring Festival, and whether products could be consumed while customers stayed at home was an important factor affecting price adjustment and inflation dynamics.

8.
Arch Virol ; 167(12): 2519-2528, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36083350

RESUMEN

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.


Asunto(s)
COVID-19 , Vacunas de ADN , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Inmunidad Celular , Ratones Transgénicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de ADN/genética
9.
Environ Pollut ; 307: 119486, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35595002

RESUMEN

Heavy metals (HMs) pollution is a universal and complex problem at lead smelting sites. Further understanding on the distribution, coexistence relationship and occurrence form of multi-metals in soils should be taken prior to restoration on the contaminated sites. In this study, 222 soil samples in a typical abandoned lead smelting site were investigated to understand the spatial distribution and geochemical partitioning of HMs. The results showed that soil quality was seriously threatened by As, Pb and Cd, which expressed high spatial heterogeneity. Integration of sequential extraction, X-ray photoelectron spectroscopy and mineral liberation analysers were employed to qualify the geochemical partitioning of HMs. The data showed that Pb and As were mainly partitioned in the reducible phase and residue phase, where the maximum of As were 18% and 79%, and the maximum of Pb were 31% and 64%, respectively, whilst Cd was mainly partitioned with residue phase (about 25%) and weakly acid soluble phase (about 18%). Paulmooreite was the major important mineral host for Pb and As, whereas Cd predominantly existed in willemite. These minerals containing HMs could usually with Fe reside in the octahedral layer of clay minerals such as montmorillonite, and may also reside in the interlayer. Quartz, montmorillonite and goethite were closely associated with HMs minerals in contaminated soils, which limited vertical migration of HMs and potential risks to groundwater. The results enhanced the understanding of spatial distribution and occurrence behavior of HMs, whilst providing potential benefits to heavy metal stabilization and risks control at abandoned non-ferrous metal smelting sites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Bentonita , Cadmio/análisis , China , Monitoreo del Ambiente/métodos , Plomo , Metales Pesados/análisis , Minerales/análisis , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis
10.
J Hazard Mater ; 433: 128774, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35397337

RESUMEN

Contaminated sites pose a significant risk to human health and the regional environment. A comprehensive study was dedicated to improving the understanding of the contamination condition of a smelting site by integrating multi-source information through 3D visualization techniques. The results showed that 3D visualization reveals excellent potential for application in the environmental studies to finely depict contamination in soils and establish relationships with geological features, hydrological conditions, and sources of contamination. The contamination plume model revealed that the soil environment at the site was seriously threatened by toxic metals, and dominated by multi-metal contamination, with contamination soil volume ranked as Cd > As > Pb> Zn > Hg. The stratigraphic model revealed the heterogeneous geological conditions of the site and identified the mixed fill layer as the primary remediation soil layer. The permeability model revealed that soil permeability significantly influenced contamination dispersion and contributed to delineate the contamination boundary accurately. The ecological hazard model targeted the high ecological hazard area and determined the high hazard contribution of Cd and Hg in the site soil. The outcomes can be directly applied to actual site remediation and provide a reference for the contaminated sites evaluation and restoration in the future.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , China , Monitoreo del Ambiente/métodos , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Zinc/análisis
12.
J Hazard Mater ; 425: 127970, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34891013

RESUMEN

Toxic metal(loid) (TM) soil pollution at large-scale non-ferrous metal smelting contaminated sites is of great concern in China, but there are no detailed reports relating to them. A comprehensive study was conducted to determine contamination characteristics and horizontal and vertical spatial distribution patterns of soils at an abandoned zinc smelting site in Southern China. The spatial distribution of TMs revealed that soil environmental quality was seriously threatened, with Cd, Zn, As, Pb and Hg being the main contaminants present. The distribution of all TMs showed strong spatial heterogeneity and were expressed as a "patchy aggregation" pattern due to strong anthropogenic and production activities. Vertical migration of TMs indicated that the pollutants were mainly concentrated in the fill layers. Different contaminants had various migration depths, with migration occurring as: Cd > Hg > As > Zn > Pb> Cu> Mn> Sb. Analysis of their spatial variability showed that As, Pb, Cd and Hg had strong regional spatial variability. This research provides a new approach to comprehensively analyze TM pollution characteristics of non-ferrous smelting sites. It provides valuable information for guiding post-remediation strategies at abandoned non-ferrous metal smelting sites.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , China , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Zinc/análisis
13.
Ann Palliat Med ; 10(5): 5146-5155, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33894725

RESUMEN

BACKGROUND: Reduning injection is a traditional Chinese medicine (TCM) with known efficacy against a variety of viral infections, but there is no data about its efficacy against coronavirus disease 2019 (COVID-19). METHODS: To explore the efficacy and safety of Reduning injection in the treatment of COVID-19, a randomized, open-labeled, multicenter, controlled trial was conducted from 12 general hospitals between 2020.02.06 and 2020.03.23. Patients with COVID-19 who met the diagnostic criteria of the "Diagnosis and Treatment Program for Novel Coronavirus Infection Pneumonia (Trial Fifth Edition)". Patients were randomized to routine treatment with or without Reduning injection (20 mL/day for 14 days) (ChiCTR2000029589). The primary endpoint was the rate of achieving clinical symptom recovery on day 14 of treatment. RESULTS: There were 77 and 80 participants in the Reduning and control groups. The symptom resolution rate at 14 days was higher in the Reduning injection than in controls [full-analysis set (FAS): 84.4% vs. 60.0%, P=0.0004]. Compared with controls, the Reduning group showed shorter median time to resolution of the clinical symptoms (143 vs. 313.5 h, P<0.001), shorter to nucleic acid test turning negative (146.5 vs. 255.5 h, P<0.001), shorter hospital stay (14.1 vs. 18.1 days, P<0.001), and shorter time to defervescence (29 vs. 71 h, P<0.001). There was no difference in AEs (3.9% vs. 8.8%, P=0.383). CONCLUSIONS: This preliminary trial suggests that Reduning injection might be effective and safe in patients with symptomatic COVID-19.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/efectos adversos , Humanos , Medicina Tradicional China , SARS-CoV-2 , Resultado del Tratamiento
14.
J Basic Microbiol ; 57(3): 265-275, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27995638

RESUMEN

To screen potential nematophagous fungi candidates for the biological control of parasitic nematodes in livestock, in vitro and in vivo studies of the native isolates of nematophagous fungi against the larvae of trichostrongylides were conducted. The in vitro predatory activity of 16 native nematophagous fungal isolates on the larvae of trichostrongylides in sheep feces was assessed. In the ten isolates of Duddingtonia flagrans, the reduction percentage for the infective larvae (L3) of Trichostrongylus colubriformis ranged from 57.21 to 99.83%, and that of Haemonchus contortus ranged from 62.12 to 99.88%. The analysis of the same assay on five isolates of Arthrobotrys superba and one isolate of A. cookedickinson (Monacrosporium cystosporum) showed comparable results with those for D. flagrans. To determine the excretion time of fungal isolates in feces after oral administration, D. flagrans (SDH035) were studied in vivo in sheep and rabbits. Results showed that the tested fungal isolates existed in sheep feces from 12 to 72 h after fungal treatment, and the fungal excretion in rabbit feces occurred at 4 h, reached a peak at 10 h, and declined gradually 18 h after oral administration. All the native fungal isolates were assessed after passing through the gastrointestinal tract of sheep. Treatment with isolates of D. flagrans significantly reduced the number of developing larvae in the feces, and the efficacies ranged from 55.15 to 98.82%. One out of the five isolates of A. superba and A. cookedickinson (BS002) survived after passing through the gastrointestinal tract, and the L3 reduction rates were 83.79 and 81.33%, respectively. Results of the present study provide information about the in vitro predatory activity of nematophagous fungi from China on the L3 of trichostrongylides and their ability to pass through the gastrointestinal tract before administering them for biocontrol.


Asunto(s)
Ascomicetos/fisiología , Agentes de Control Biológico , Duddingtonia/fisiología , Haemonchus/fisiología , Control Biológico de Vectores , Trichostrongyloidea/fisiología , Administración Oral , Animales , Ascomicetos/aislamiento & purificación , China , Duddingtonia/aislamiento & purificación , Heces/microbiología , Heces/parasitología , Tracto Gastrointestinal/microbiología , Haemonchus/microbiología , Larva/microbiología , Larva/fisiología , Conejos , Ovinos/microbiología , Ovinos/parasitología , Trichostrongyloidea/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...