Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; : 118503, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942157

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Citri Reticulatae Pericarpium (CRP), known as Chen Pi in China, is the most commonly used medicine for regulating qi. As a traditional medicine, CRP has been extensively used in the clinical treatment of nausea, vomiting, cough and phlegm for thousands of years. It is mainly distributed in Guangdong, Sichuan, Fujian and Zhejiang in China. Due to its high frequency of use, many scholars have conducted a lot of research on it and the related chemical constituents it contains. In this review, the research progress on phytochemistry, pharmacology, pharmacokinetics and toxicology of CRP are summarized. AIM OF THE REVIEW: The review aims to sort out the methods of extraction and purification, pharmacological activities and mechanisms of action, pharmacokinetics and toxicology of the chemical constituents in CRP, in order to elaborate the future research directions and challenges for the study of CRP and related chemical constituents. MATERIALS AND METHODS: Valid and comprehensive relevant information was collected from China National Knowledge Infrastructure, Web of Science, PubMed and so on. RESULTS: CRP contains a variety of compounds, of which terpenes, flavonoids and alkaloids are the main components, and they are also the primary bioactive components that play a pharmacological role. Flavonoids and terpenes are extracted and purified by aqueous and alcoholic extraction methods, assisted by ultrasonic and microwave extraction, in order to achieve higher yields with less resources. Pharmacological studies have shown that CRP possesses a variety of highly active chemical components and a wide range of pharmacological activities, including anti-tumor, anti-inflammatory, immunomodulatory, hepatoprotective, therapeutic for cardiovascular-related disorders, antioxidant, antibacterial, and neuroprotective effects. CONCLUSIONS: There is a diversity in the chemical compositions of CRP, which have multiple biological activities and promising applications. However, the pharmacological activities of CRP are mainly dependent on the action of its chemical components, but the relationship between the structure of chemical components and the biological effects has not been thoroughly investigated, and therefore, the structure-activity relationship is an issue that needs to be elucidated urgently. In addition, the pharmacokinetic studies of the relevant components can be further deepened and the correlation studies between pharmacological effects and syndromes of TCM can be expanded to ensure the effectiveness and rationality of CRP for human use.

2.
Heliyon ; 10(7): e28582, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586416

RESUMEN

The combination of Chaidangbo (CDB) is an antidepressant traditional Chinese medicine (TCM) prescription simplified by Xiaoyaosan (a classic antidepressant TCM prescription) through dismantling research, which has the effect of dispersing stagnated liver qi and nourishing blood in TCM theory. Although the antidepressant effect of CBD has been confirmed in animal studies, the material basis and possible molecular mechanism for antidepressant activity in CBD have not been clearly elucidated. Herein, we investigated the effects and potential mechanisms of CDB antidepressant fraction (petroleum ether fraction of CDB, PEFC) on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice using network pharmacology and metabolomics. First, a UPLC-QE/MS was employed to identify the components of PEFC. To extract active ingredients, SwissADME screening was used to the real PEFC components that were found. Potential PEFC antidepressant targets were predicted based on a network pharmacology approach, and a pathway enrichment analysis was performed for the predicted targets. Afterward, a CUMS mouse depression model was established and LC-MS-based untargeted hippocampal metabolomics was performed to identify differential metabolites, and related metabolic pathways. Finally, the protein expressions in mouse hippocampi were determined by Western blot to validate the network pharmacology and metabolomics deduction. A total of 16 active compounds were screened in SwissADME that acted on 73 core targets of depression, including STAT3, MAPKs, and NR3C1; KEGG enrichment analysis showed that PEFC modulated signaling pathways such as PI3K-Akt signaling pathway, endocrine resistance, and MAPK to exert antidepressant effects. PEFC significantly reversed abnormalities of hippocampus metabolites in CUMS mice, mainly affecting the synthesis and metabolism of glycine, serine, and threonine, impacting catecholamine transfer and cholinergic synapses and regulating the activity of the mTOR signaling pathway. Furthermore, Western blot analysis confirmed that PEFC significantly influenced the main protein levels of the PI3K/Akt/mTOR signaling pathways in the hippocampus of mice subjected to CUMS. This study integrated metabolomics, network pharmacology and biological verification to explore the potential mechanism of PEFC in treating depression, which is related to the regulation of amino acid metabolism dysfunction and the activation of PI3K/Akt/mTOR signaling pathways in the hippocampus. The comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in TCM with antidepressant effect.

3.
J Ethnopharmacol ; 325: 117838, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38310986

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY: The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS: We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS: A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS: In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inmunidad , Macrófagos
4.
Int J Biol Macromol ; 262(Pt 2): 130030, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336330

RESUMEN

Schisandra chinensis, as a famous medicinal and food homologous plant, has a long history of medicinal and dietary therapy. It has the functions of nourishing the kidney, calming the heart, tranquilising the mind, tonifying Qi and producing fluid to relieve mental stress, based on the theory of traditional Chinese medicine. Accumulating evidence has shown that S. chinensis polysaccharides (SCPs) are one of the most important bioactive macromolecules and exhibit diverse biological activities in vitro and in vivo, including neuroprotective, hepatoprotective, immunomodulatory, antioxidant, hypoglycemic, cardioprotective, antitumour and anti-inflammatory activities, etc. This review aims to thoroughly review the recent advances in the extraction and purification methods, structural features, biological activities and structure-activity relationships, potential applications and quality assessment of SCPs, and further highlight the therapeutic potentials and health functions of SCPs in the fields of therapeutic agents and functional food development. Future insights and challenges of SCPs were also critically discussed. Overall, the present review provides a theoretical overview for the further development and utilization of S. chinensis polysaccharides in the health food and pharmaceutical fields.


Asunto(s)
Extractos Vegetales , Schisandra , Extractos Vegetales/química , Schisandra/química , Antioxidantes/farmacología , Dieta , Polisacáridos/química
5.
J Ethnopharmacol ; 324: 117785, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262525

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Postpartum depression (PPD) is a common psychiatric disorder in women after childbirth. Per data from epidemiologic studies, PPD affects about 5%-26.32% of postpartum mothers worldwide. Biological factors underlying this condition are multiple and complex and have received extensive inquiries for the roles they play in PPD. Chinese herbal medicine (CHM), which is widely used as a complementary and alternative therapy for neurological disorders, possesses multi-component, multi-target, multi-access, and low side effect therapeutic characteristics. CHM has already shown efficacy in the treatment of PPD, and a lot more research exploring the mechanisms of its potential therapeutic effects is being conducted. AIM OF THE REVIEW: This review provides an in-depth and comprehensive overview of the underlying mechanisms of PPD, as well as samples the progress made in researching the potential role of CHM in treating the disorder. MATERIALS AND METHODS: Literature was searched comprehensively in scholarly electronic databases, including PubMed, Web of Science, Scopus, CNKI and WanFang DATA, using the search terms "postpartum depression", "genetic", "hormone", "immune", "neuroinflammation", "inflammation", "neurotransmitter", "neurogenesis", "brain-gut axis", "traditional Chinese medicine", "Chinese herbal medicine", "herb", and an assorted combination of these terms. RESULTS: PPD is closely associated with genetics, as well as with the hormones, immune inflammatory, and neurotransmitter systems, neurogenesis, and gut microbes, and these biological factors often interact and work together to cause PPD. For example, inflammatory factors could suppress the production of the neurotransmitter serotonin by inducing the regulation of tryptophan-kynurenine in the direction of neurotoxicity. Many CHM constituents improve anxiety- and depression-like behaviors by interfering with the above-mentioned mechanisms and have shown decent efficacy clinically against PPD. For example, Shen-Qi-Jie-Yu-Fang invigorates the neuroendocrine system by boosting the hormone levels of hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes, regulating the imbalance of Treg/T-helper cells (Th) 17 and Th1/Th2, and modulating neurotransmitter system to play antidepressant roles. The Shenguiren Mixture interferes with the extracellular signal-regulated kinase (ERK) pathway to enhance the number, morphology and apoptosis of neurons in the hippocampus of PPD rats. Other herbal extracts and active ingredients of CHM, such as Paeoniflorin, hypericin, timosaponin B-III and more, also manage depression by remedying the neuroendocrine system and reducing neuroinflammation. CONCLUSIONS: The pathogenesis of PPD is complex and diverse, with the main pathogenesis not clear. Still, CHM constituents, like Shen-Qi-Jie-Yu-Fang, the Shenguiren Mixture, Paeoniflorin, hypericin and other Chinese Medicinal Formulae, active monomers and Crude extracts, treats PPD through multifaceted interventions. Therefore, developing more CHM components for the treatment of PPD is an essential step forward.


Asunto(s)
Antracenos , Depresión Posparto , Medicamentos Herbarios Chinos , Glucósidos , Monoterpenos , Perileno/análogos & derivados , Humanos , Femenino , Animales , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Depresión Posparto/tratamiento farmacológico , Medicina Tradicional China , Factores Biológicos , Neurotransmisores
6.
Biomed Pharmacother ; 170: 115994, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070249

RESUMEN

Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 µM) with RA (12.5, 25 or 50 µM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Fosfatidilinositol 3-Quinasas , Ratones , Masculino , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ácido Rosmarínico , Ratones Endogámicos C57BL , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/metabolismo , Hipocampo , Antidepresivos/farmacología , Neurogénesis
7.
Phytomedicine ; 119: 155015, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597362

RESUMEN

BACKGROUND: Depression is a severe mental illness that endangers human health. Depressed individuals are prone to sleep less and to the loss of appetite for food; their thinking and cognition processes, as well as mood, may even be affected. Danzhi Xiaoyao San (DXS), documented in the Internal Medicine Summary, has been used for hundreds of years in China and is widely applied traditionally to treat liver qi stagnation, liver and spleen blood deficiency, menstrual disorders, and spontaneous and night sweating. DXS can also clear heat and drain the liver. Presently, it is used frequently in the treatment of depression based on its ability to clear the liver and alleviate depression. PURPOSE: To summarize clinical and preclinical studies on the antidepressant-like effects of DXS, understand the material basis and mechanisms of these effects, and offer new suggestions and methods for the clinical treatment of depression. METHODS: "Danzhi Xiaoyao", "Danzhixiaoyao", "Xiaoyao", "depression" and active ingredients were entered as keywords in PubMed, Google Scholar, CNKI and WANFANG DATA databases in the search for material on DXS and its active ingredients. The PRISMA guidelines were followed in this review process. RESULTS: Per clinical reports, DXS has a therapeutic effect on patients with depression but few side effects. DXS and its active ingredients allegedly produce their neuroprotective antidepressant-like effects by modulating monoamine neurotransmitter levels, inhibiting the hypothalamic-pituitary-adrenal (HPA) axis hyperfunction, reducing neuroinflammation and increasing neurotrophic factors. CONCLUSION: Overall, DXS influences multiple potential mechanisms to exert its antidepressant-like effects thanks to its multicomponent character. Because depression is not caused by a single mechanism, probing the antidepressant-like effects of DXS could further help understand the pathogenesis of depression and discover new antidepressant drugs.


Asunto(s)
Antidepresivos , Medicina Tradicional China , Antidepresivos/química , Antidepresivos/farmacología , Humanos , Animales , Neurotransmisores/química , Neurotransmisores/farmacología , Neuroprotección/efectos de los fármacos , Metabolómica
8.
Mol Immunol ; 160: 133-149, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429064

RESUMEN

Jing-Fang powder ethyl acetate extract (JFEE) and its isolated C (JFEE-C) possess favorable anti-inflammatory and anti-allergic properties; however, their inhibitory effects on T cell activity remain unknown. In vitro, Jurkat T cells and primary mouse CD4+ T cells were used to explore the regulatory effects of JFEE and JFEE-C as well as their potential mechanisms on activated T cells. Furthermore, T cell-mediated atopic dermatitis (AD) mouse model was established to confirm these inhibitory effects in vivo. The results showed that JFEE and JFEE-C inhibited T cell activation by suppressing the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) without showing cytotoxicity. Flow cytometry showed the inhibitory effects of JFEE and JFEE-C on the activation-induced proliferation and apoptosis of T cells. Pretreatment with JFEE and JFEE-C also decreased the expression levels of several surface molecules, including CD69, CD25, and CD40L. Moreover, it was confirmed that JFEE and JFEE-C inhibited T cell activation by downregulating the TGF-ß-activated kinase 1 (TAK1)/nuclear kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathways. The combination of these extracts with C25-140 intensified the inhibitory effects on IL-2 production and p65 phosphorylation. The oral administration of JFEE and JFEE-C notably weakened AD manifestations, including the infiltration of mast cells and CD4+ cells, epidermis and dermis thicknesses, serum levels of immunoglobulin E (IgE) and thymic stromal lymphopoietin (TSLP), and gene expression levels of T helper (Th) cells-related cytokines in vivo. The underlying mechanisms of the inhibitory effects of JFEE and JFEE-C on AD were related to attenuating T cell activity through NF-κB/MAPK pathways. In conclusion, this study suggested that JFEE and JFEE-C exhibited anti-atopic efficacy by attenuating T cell activity and might possess a curative potential for T cell-mediated diseases.


Asunto(s)
Dermatitis Atópica , Animales , Ratones , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inducido químicamente , Interleucina-2 , Polvos/efectos adversos , Polvos/metabolismo , FN-kappa B/metabolismo , Citocinas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Ratones Endogámicos BALB C , Extractos Vegetales/farmacología
9.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1066-1075, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872277

RESUMEN

This paper aimed to explore the antidepressant effect of the essential oil from Schizonepeta tenuifolia Briq.(EOST) on the treatment of depression and its mechanism by using a combination of network pharmacology and the mouse model of lipopolysaccharide(LPS)-induced depression. The chemical components in EOST were identified using gas chromatography-mass spectrometer(GC-MS), and 12 active components were selected as the study objects. The targets related to EOST were obtained by Traditional Chinese Medicines Systems Pharmacology(TCMSP) and SwissTargetPrediction database. The targets related to depression were screened out through GeneCards, Therapeutic Target Database(TTD), and Online Mendelian Inheritance in Man(OMIM) database. The Venny 2.1 was applied to screen out the common targets of EOST and depression. The targets were imported into Cytoscape 3.7.2 to generate "drug-active component-diease-target" network diagram. The protein-protein interaction(PPI) network was constructed using STRING 11.5 database and Cytoscape 3.7.2, and the core targets were screened out. DAVID 6.8 database was used for Gene Ontology(GO) func-tional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and subsequently the enrichment results were visualized through the bioinformatics platform. The mouse model of depression was induced by intraperitoneally injecting with LPS in mice. Before modeling, mice were administrated orally with EOST. The antidepressant effect of EOST was evalua-ted by tail suspension test(TST), forced swimming test(FST), and novelty suppressed feeding test(NSFT) after modeling. The content of interleukin(IL)-1ß was determined by enzyme-linked immunosorbent assay(ELISA), and the protein expression levels of IL-1ß and pro IL-1ß in the hippocampus were determined by Western blot. There were 12 main components and 179 targets in EOAT, of which, 116 targets were related to depression, mainly involved in neuroactive ligand-receptor interaction, calcium signaling pathway, and cyclic adenosine monophosphate(cAMP) signaling pathway. Biological processes such as synaptic signal transduction, G-protein coupled receptor signaling pathway, and chemical synaptic transmission were involved. Molecular functions such as neurotransmitter receptor activity, RNA polymerase Ⅱ transcription factor activity, and heme binding were involved. In mice experiments, the results showed that EOST at 100 mg·kg~(-1) and 50 mg·kg~(-1) significantly shortened the immobility time in TST and FST as well as the feeding latency in NSFT compared with the model group, decreased the levels of serum IL-1ß and NO, and reduced the protein expression levels of IL-1ß and pro IL-1ß in the hippocampus. In conclusion, EOST shows a good antidepressant effect in a multi-component, multi-target, and multi-pathway manner. The mechanism may be attributed to the fact that EOST can down-regulate the protein expression levels of IL-1ß and pro IL-1ß, decrease the release of inflammatory factors, and reduce neuroinflammation response.


Asunto(s)
Aceites Volátiles , Animales , Ratones , Depresión , Lipopolisacáridos , Farmacología en Red , Bases de Datos Genéticas , Señalización del Calcio , Modelos Animales de Enfermedad
10.
Talanta ; 259: 124478, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989966

RESUMEN

The changes of metabolites of tricarboxylic acid (TCA) cycle in cells under hypoxia play a key role in drug screening. In order to dynamically monitor the drug metabolism changes of Scutellarin in the hypoxia environment induced by deferoxamine (DFO), a microfluidic-chip mass spectrometry method was used to study the real-time monitoring of drug metabolism changes under hypoxia conditions. This system has six drug-loading units, cell culture chamber, metabolite collection, filtration, HPLC separation and mass spectrometer. The cells in each microchannel were incubated with continuous flow of culture medium, metabolites will be collected by the fixed card slot, automatic sampling needle will be precise positioned and sampled. Through this new system combined with molecular biological methods, the changes of metabolites in TCA cycle of BV2 cells and drug metabolism of Scutellarin can be determined in real-time. In general, we illustrated a new mechanism of Scutellarin for reducing BV2 cell hypoxia injury and presented a novel analysis strategy that opened a way for real-time online monitoring of the energy metabolic mechanism of the effect of drugs on cells and further provided a superior strategy to screen natural drug candidates for hypoxia-related brain disease treatment.


Asunto(s)
Deferoxamina , Microfluídica , Humanos , Deferoxamina/farmacología , Hipoxia , Espectrometría de Masas , Células Cultivadas
11.
Food Chem ; 397: 133731, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908464

RESUMEN

Phellinus spp., an important medicinal fungus mushroom extensively cultivated and consumed in East Asia for over 2000 years, is traditionally considered a precious food supplement and medicinal ingredient. Published studies showed that the polysaccharides are major bioactive macromolecules from Phellinus spp. (PPs) with multiple health-promoting effects, including immunomodulatory, anti-cancer, anti-inflammatory, hepatoprotective, hypoglycemic, hypolipidemic, antioxidant, and other bioactivities. Although the polysaccharides extracted from the fruiting body, mycelium, and fermentation broth of Phellinus spp. have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge for their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. This review systematically summarizes the recent progress in the isolation and purification, chemical structures, bioactivities, and the underlying mechanisms of PPs. Information from this review provides insights into the further development of polysaccharides from PPs as therapeutic agents and functional foods.


Asunto(s)
Agaricales , Agaricales/química , Antiinflamatorios , Antioxidantes/química , Micelio , Phellinus , Polisacáridos/química
12.
Front Pharmacol ; 13: 824579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370749

RESUMEN

Fengreqing oral liquid (FOL), a Chinese patent drug frequently used in clinical practice in China, is effective in treating inflammatory diseases of the upper respiratory tract such as colds and flu. However, its anti-inflammatory effects and mechanisms remain to be elucidated. In this study, the anti-inflammatory effects of FOL and its mechanisms on PI3K/AKT and NF-κB signaling pathways in LPS-induced RAW264.7 cells were explored, as well as the regulatory effect of FOL on apoptosis. In addition, the potential of FOL for the treatment of acute lung injury was explored in LPS-induced ALI mice. The results showed that treatment with FOL significantly reduced the levels of interleukin 1ß (IL-1ß), interleukin 6 (IL-6), nitric oxide (NO), and tumor necrosis factor α (TNF-α) in the supernatant of LPS-induced RAW264.7 cells, and also significantly reduced the phosphorylated protein levels of PI3K and AKT in the PI3K/AKT signaling pathway and also protein levels of NF-κB p50, phosphorylated NF-κB p65, and IκBα in the NF-κB signaling pathway. In addition, the results showed that FOL induced apoptosis in LPS-induced RAW264.7 cells at the level of 80%-90%, and significantly increased the protein expression levels of the pro-apoptotic Bax and cleaved-caspase-3. In LPS-induced ALI mice, FOL administration showed inhibition of IL-1ß, IL-6, and TNF-α in Bronchoalveolar lavage fluid (BALF) and decreased protein expression levels of PI3K, AKT, NF-κB p50, and NF-κB p65, and elevated protein expression levels of Bax and cleaved-caspase-3 significantly. These results suggest that FOL may exert anti-inflammatory effects by inhibiting the PI3K/AKT signaling pathway to promote apoptosis and leading to attenuated activation of the NF-κB signaling pathway.

13.
J Ethnopharmacol ; 293: 115300, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35430288

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Baishouwu has been used in China for thousands of years since it was first discovered in the late Tang Dynasty and flourished in the Song and Ming Dynasties. The Chinese herbal medicines named Baishouwu include Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii Hemsl. It is described in the Sign of Materia Medica as "sweet, bitter, reinforce liver and kidney, and non-toxic". It is widely used for nourishing the blood to expel wind, reinforcing liver and kidney, strengthening bones and muscles. AIM OF THE REVIEW: In this review, the current research status of the C21 steroidal glycosides and their derivatives of Baishouwu for malignant tumours and their anti-tumour mechanisms are discussed. This may lay the ground for potential application of Baishouwu and its active ingredients in the treatment of tumours. MATERIALS AND METHODS: Scientific databases, including PubMed, Elsevier, Science Direct, Google Scholar, CNKI, WANFANG DATA and VIP were searched to gather data about Baishouwu and its C21 steroidal glycosides and their derivatives. RESULTS: Prior literature indicates that Baishouwu has important biological activities such as anti-tumour, anti-epileptic, reducing cholesterol, protection of liver and kidney and immunomodulatory, which are of increasing interest, especially its anti-tumour activity. Recent studies demonstrate that the C21 steroidal glycosides of Baishouwu, which have prominent antitumour efficacy, are one of its main active ingredients. Presently, a variety of C21 steroidal glycosides have been isolated from Baishouwu medicinal part, the tuberous root. This review summarizes the various antitumour activities of the C21 steroidal glycosides and their derivatives of Baishouwu. CONCLUSIONS: In this review, the antitumour effects and mechanisms of total C21 steroidal glycosides and monomers and derivatives of Baishouwu in vitro and in vivo were summarized. Baishouwu can inhibit tumourigenesis by blocking tumour cell cycle progression, regulating numerous signaling pathways, promoting apoptosis, inhibiting tumour cells proliferation and metastasis, improving immunity and so on. This review provides a theoretical basis for inheriting and developing the medical heritage of the motherland, exploring the resources of traditional Chinese medicine for ethnic minorities and clinical rational drug use.


Asunto(s)
Cynanchum , Apoptosis , Glicósidos/farmacología , Glicósidos/uso terapéutico , Hígado , Medicina Tradicional China
14.
Int J Biol Macromol ; 206: 325-354, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35240211

RESUMEN

Undaria pinnatifida, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for edema, phlegm elimination and diuresis, and detumescence for more than 2000 years. Numerous studies have found that polysaccharides of U. pinnatifida play an indispensable role in the nutritional and medicinal value. The water extraction and alcohol precipitation method are the most used method. More than 40 U. pinnatifida polysaccharides (UPPs) were successfully isolated and purified from U. pinnatifida, whereas only few of them were well characterized. Pharmacological studies have shown that UPPs have high-order structural features and multiple biological activities, including anti-tumor, antidiabetic, immunomodulatory, antiviral, anti-inflammatory, antioxidant, anticoagulating, antithrombosis, antihypertension, antibacterial, and renoprotection. In addition, the structural characteristics of UPPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, structure-activity relationships and industrial application of UPPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of UPPs were also outlined. Furthermore, the clinical settings and structure-activity functions of UPPs were highlighted. Some research perspectives and challenges in the study of UPPs were also proposed.


Asunto(s)
Undaria , Polisacáridos/química , Undaria/química
15.
Phytomedicine ; 100: 154047, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35320770

RESUMEN

BACKGROUND: Cinnamic acid (CA) is an active organic acid compound extracted from Cinnamomi ramulus that has various biological activities. There is growing studies have shown that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome significantly contributes to sterile inflammatory response and pyroptosis in myocardial ischemia/reperfusion injury (MI/RI). However, whether CA has any influence on NLRP3 inflammasome and pyroptosis during MI/RI are not fully elucidated. PURPOSE: In the present study, we investigated whether NLRP3 inflammasome activation and pyroptosis were involved in the cardioprotective effect of CA against MI/RI. METHODS: Male Sprague-Dawley rats were intragastrically administered either with CA (75 and 150 mg/kg, daily) or vehicle for 7 successive days prior to ligation of coronary artery, and then rats were subjected to ligation of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min to evoke MI/RI. RESULTS: Our results demonstrated that CA could significantly improve cardiac diastolic function, decrease cardiac infarct size and myocardial injury enzymes, inhibit cardiomyocyte apoptosis, attenuate cardiac structure abnormality, and mitigate oxidative stress and inflammatory response. We also found that MI/RI activate NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, pro-caspase-1, caspase-1, and ASC proteins and mRNA. More importantly, MI/RI trigger pyroptosis as indicated by increased DNA fragmentation, membrane pore formation, and mitochondrial swelling as well as increased levels of pyroptosis-related proteins and mRNA, including GSDMD, N-GSDMD, IL-18, and IL-1ß. As expected, all these deleterious alterations were prominently reversed by CA pretreatment. CONCLUSIONS: These findings indicate that CA effectively protected cardiomyocytes against MI/RI by inhibiting NLRP3/Caspase-1/GSDMD signaling pathway, and it is worthy of more investigations for its therapeutic potential for extenuating ischemic heart disease.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Caspasa 1/metabolismo , Cinamatos , Inflamasomas/metabolismo , Masculino , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Transducción de Señal
16.
Phytomedicine ; 96: 153891, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35026506

RESUMEN

BACKGROUND: Jing-Fang powder consists of Jingjie (Nepeta tenuifolia Benth, (Lamiaceae)). and Fangfeng (Saposhnikovia divaricata (Turcz.) Schischk, (Apiaceae)) Previous studies have revealed that the Jing-Fang powder n-butanol extract (JFNE) has anti-acute lung injury (ALI) and anti-inflammatory properties; however, the active ingredient and mechanism remain unknown. PURPOSE: In the present study, we investigated the anti-inflammatory effect of a bioactive fraction obtained from JFNE(JFNE-A) on lipopolysaccharide (LPS)-induced ALI in mice and explored the underlying mechanism. STUDY DESIGN: The anti-acute lung injury effect and mechanism of JFNE-A was investigated by prophylactic administration of JFNE-A in mice with LPS-induced acute lung injury. METHODS: The expression levels of myeloperoxidase(MPO) in lung tissues of mice and interleukin(IL)-6, tumor necrosis factor(TNF)-α, IL-1ß, IL-5, interferon (IFN)-γ, monocyte chemotactic protein (MCP)-1, macrophage colony stimulating factor (M-CSF), macrophage inflammatory protein (MIP)-1α, and MIP-1ß in bronchi alveolar lavage fluid (BALF) were detected by reagent kit and the histological changes were examined by hematoxylin and eosin (H & E) for general histopathological conditions under a light microscope. In addition, the ultrastructure of the cells in lung tissues were observed and photographed under a transmission electron microscope. The expression levels of protein were detected via Western blotting and the mRNA expression of relative genes were determined of via reverse transcriptase polymerase chain reaction (RT-PCR). What's more, we also further clarified the potential targets of JFNE-A through network pharmacology analysis, which could be utilized in ALI treatment. RESULTS: Our results showed that pretreatment with JFNE-A for 7 days significantly reduced the lung pathological injury score, alleviated pulmonary edema, and decreased the lung tissue MPO level. Mechanistically, JFNE-A dramatically downregulated the protein levels of IL-6, TNF-α, IL-1ß, M-CSF, and IFN-γ in BALF and mRNA expression levels of IL-6, TNF-α, IL-1ß, and IFN-γ in lung tissues. JFNE-A also significantly lowered the protein levels of iNOS and phosphorylated NF-κB (p65) and mRNA expression levels of iNOS, Rela, CHUK, and NF-κB1, and also elevated the protein expression levels of Nrf2, HO-1, and SOD1 and the mRNA expression levels of Nrf2, Hmox1, and Keap-1 in the lungs. Moreover, JFNE-A significantly decreased the protein expression of p62 and increased the ratio of LC3II/LC3I. It also upregulated the mRNA expression levels of Atg5 and Beclin-1, whereas it reduced the mRNA expression level of SQSTM1 and increased autophagosome structures. CONCLUSION: Overall, treatment with JFNE-A ameliorated LPS-induced ALI in mice by suppressing the NF-κB signaling pathways and promoting Nrf2 signaling pathways by accelerating autophagy.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , 1-Butanol , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Autofagia , Butanoles , Humanos , Pulmón/metabolismo , FN-kappa B/metabolismo , Farmacología en Red , Estrés Oxidativo , Extractos Vegetales/farmacología , Transducción de Señal
17.
J Ethnopharmacol ; 288: 115005, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35051601

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyaosan (XYS), a representative and classic traditional Chinese medicine (TCM) prescription with function of dispersing stagnated liver and strengthening spleen, has been used for thousands of years to treat depression. XYS' anti-depression effect has been demonstrated both clinically and experimentally; however, the material basis for this effect has yet to be elucidated. AIM OF THE STUDY: This study aimed to evaluate the impact and underlying action mechanism of XYS' antidepressant active component (Xiaoyaosan ethyl acetate fraction, XYSEF) against chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice. MATERIALS AND METHODS: First, we established a behavioral despair depression mouse model to preliminarily determine the effective antidepressant dose of XYSEF. Then, we created a CUMS mouse model and used various classic behavioral tests, including SPT, ST, NFST, and TST, to assess XYSEF's antidepressant properties. IGF-1 levels in mouse serum and hippocampus were quantified using ELISA. The average optical density of Nissl bodies in the mouse hippocampal CA3 region was determined utilizing toluidine blue staining. Brdu and DCX expression in the hippocampal dentate gyrus (DG) was assayed using the immunofluorescence method. IGF-1Rß, PI3K, p-PI3K, Akt, p-Akt, Caspase-3, and cleaved Caspase-3 protein levels in the hippocampus were determined with Western blot. RESULTS: The behavioral despair mouse model findings showed that 9.1 and 40 g/kg of XYSEF both significantly shortened the immobility time of mice, suggesting that the effective dose range was 9.1-40 g/kg. Compared to the CUMS mouse model, XYSEF at 20 and 40 g/kg markedly increased the sucrose preference percentage in the SPT and grooming time in the ST, shortened the immobility time in the TST and the feeding latency in the NSFT, and reversed the downregulated IGF-1 content in mouse serum and hippocampus. In addition, XYSEF amplified the average optical density of Nissl bodies in the hippocampal CA3 region, promoted Brdu and DCX expression in DG, and diminished IGF-1Rß, p-PI3K/PI3K, p-Akt/Akt, and cleaved Caspase-3/Caspase-3 protein levels in the hippocampi of CUMS mice. CONCLUSION: XYSEF acted as an antidepressant in mice exhibiting CUMS-induced depression-like behaviors, possibly by promoting hippocampal neurogenesis, reducing neuronal apoptosis, and inhibiting the over-activation of the IGF-1Rß/PI3K/Akt pathway.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Acetatos , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neurogénesis/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Front Microbiol ; 12: 795756, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956164

RESUMEN

Cepharanthine (CEP) is a naturally occurring isoquinoline alkaloid extracted from Stephania cepharantha Hayata. Although its underlying molecular mechanism is not fully understood, this compound is reported as a promising antiviral drug. In the present study, we explore the anti-HSV-1 effects and the underlying molecular mechanisms of CEP in vitro. Our results show that CEP could significantly inhibit the formation of plaque and the expression of viral proteins and exhibit a general suppression of replication-associated genes. Whereas HSV-1 infection increases the expressions of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38 MAPK) in host cells, CEP was effective indirectly inhibiting phosphorylation levels of the targets in PI3K/Akt and p38 MAPK signaling pathways. Moreover, CEP markedly decreased G0/G1 phase and increased G2/M phase cells and decreased the expression of cyclin-dependent kinase1 (CDK1) and cyclinB1 in a dose-dependent manner. Additionally, CEP increased apoptosis in infected cells, reduced B cell lymphoma-2 (Bcl-2) protein levels, and increased the protein levels of Bcl-associated X protein (Bax), cleaved-caspase3, and nuclear IκB kinaseα (IκBα). Collectively, CEP could arrest the cell cycle in the G2/M phase and induce apoptosis in infected cells by inhibiting the PI3K/Akt and p38 MAPK signaling pathways, hence further reducing HSV-1 infection and subsequent reproduction.

19.
Front Pharmacol ; 12: 643456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935736

RESUMEN

Numerous studies have revealed that oxidative stress is closely associated with the occurrence and development of depression. Xiaoyao Pills (XYW) are included in the Chinese Pharmacopoeia and are frequently used for treating anxiety and depression by smoothing the liver, strengthening the spleen, and nourishing the blood. However, the antidepressant effects of XYW have not yet been thoroughly investigated. The objective of our study was to investigate the antidepressant-like effects of XYW and the underlying molecular mechanism in the olfactory bulbectomized (OB) rat model of depression using the open field test (OFT), sucrose preference test (SPT), splash test (ST), and novelty suppressed feeding test (NSFT). Results showed that XYW (0.93 and 1.86 g·kg-1) significantly alleviated depression-like behaviors in rats, which was indicated by increased sucrose preference in the SPT, prolonged grooming time in the ST, decreased horizontal movement in the OFT, and shorter feeding latency in the NSFT. In addition, XYW treatment dramatically reversed the reduced activity of superoxide dismutase and the decreased level of glutathione, while also lowering levels of malondialdehyde, an inflammatory mediator (nitric oxide), and pro-inflammatory cytokines (interleukin-6 and 1ß) in the serum and cortex of OB rats. Mechanistically, XYW induced marked upregulation of mRNA and protein expression levels of NFE2L2, KEAP1, GPX3, HMOX1, SOD1, NQO1, OGG1, PIK3CA, p-AKT1/AKT1, NTRK2, and BDNF, and downregulation of ROS in the cortex and hippocampus via the activation of the NFE2L2/KEAP1, PIK3CA/AKT1, and NTRK2/BDNF pathways. These findings suggest that XYW exert antidepressant-like effects in OB rats with depression-like symptoms, and these effects are mediated by the alleviation of oxidative stress and the enhancement of neuroprotective effects through the activation of the PIK3CA-AKT1-NFE2L2/BDNF signaling pathways.

20.
Mol Immunol ; 135: 408-420, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33518365

RESUMEN

Jing-Fang powder (Schizonepeta tenuifolia Briq. and Saposhnikovia divaricata (Turcz.) Schischk.) was used to treat chronic bronchitis, asthma and chronic urticaria. Based on the preliminary results of screening research on the antiallergic effective parts of Jing-Fang powder, its ethyl acetate extract fractions (JFEE) and isolate D (JFEE-D) showed the best anti-allergic effect. RBL-2H3 cell activation degranulation model and mice passive cutaneous anaphylaxis (PCA) reaction model were used to investigate the effects and mechanisms of JFEE and JFEE-D on IgE-mediated type I allergic reactions. LC-MS was utilized to determine the composition of JFEE and JFEE-D. We found that JFEE and JFEE-D significantly reduced ß-HEX, histamine, IL-4, IL-6 levels in cell supernatants, and improved the degree and morphology of cell degranulation. JFEE and JFEE-D significantly inhibited the increase of ear vascular permeability and abnormal increase of serum IgE, TNF-α, IL-6 levels. JFEE and JFEE-D inhibited mRNA expression of PI3K and Akt and down-regulated protein expression of PI3K, Akt, p-Akt, and PLCγ1 in sensitized RBL-2H3 cells. The combined use of JFEE and JFEE-D with pathway inhibitor Wortmannin revealed synergistic down-regulation of PI3K, Akt, and p-Akt protein expression. The combined use of pathway agonist IGF-1, JFEE and JFEE-D down-regulated increase of p-Akt/Akt protein expression. Moreover, JFEE and JFEE-D significantly inhibited protein expression of PI3K, p-Akt and PLCγ1 in PCA model mice. These results show that JFEE and JFEE-D inhibit type I allergic reactions by inhibiting PI3K/Akt signaling pathway.


Asunto(s)
Antialérgicos/farmacología , Apiaceae/química , Lamiaceae/química , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Anafilaxia/tratamiento farmacológico , Anafilaxia/prevención & control , Animales , Asma/tratamiento farmacológico , Bronquitis Crónica/tratamiento farmacológico , Permeabilidad Capilar/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Urticaria Crónica/tratamiento farmacológico , Ratones , Fosfatidilinositol 3-Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Ratas , Wortmanina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...