Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(5): e22877, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37014317

RESUMEN

Hypertrophic ligamentum flavum (LF) is a main factor responsible for lumbar spinal stenosis (LSS); however, the exact mechanisms of the pathogenesis of these processes remain unknown. This study aimed to elucidate whether circular RNAs and microRNAs regulate the pathogenesis of LF and LSS, especially focusing on circPDK1 (hsa_circ_0057105), a circRNA targeting pyruvate dehydrogenase kinase 1 and differentially expressed in LF tissues between lumbar disk herniation and LSS patients. The circPDK1/miR-4731 and miR-4731/TNXB (Tenascin XB) interactions were predicted and validated by luciferase reporter assay. Colony formation, wound-healing, and MTT assays were used for estimating cell proliferation and migration. Protein expression levels were evaluated using Western blotting. TNXB expression was verified using immunohistochemistry (IHC). Overexpressing circPDK1 promoted the proliferation, migration, and expression of fibrosis-related protein (alpha smooth muscle actin (α-SMA), lysyl oxidase like 2 (LOXL2), Collagen I, matrix metalloproteinase-2 (MMP-2) and TNXB) in LF whereas miR-4731-5p showed opposite effects. The expression of TNXB was promoted by circPDK1; contrary results were observed with miR-4731-5p. Co-overexpression of miR-4731-5p partially reversed the proliferative and fibrosis-prompting effects of circPDK1 or TNXB. The circPDK1-miR-4731-TNXB pathway may be proposed as a regulatory axis in LF hypertrophy, which might shed light on in-depth research of LSS, as well as providing a novel therapeutic target for LF hypertrophy-induced LSS.


Asunto(s)
Ligamento Amarillo , MicroARNs , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ligamento Amarillo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis , Hipertrofia/metabolismo
2.
Front Cell Infect Microbiol ; 12: 834015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186802

RESUMEN

Over the past decade, Apiotrichum mycotoxinivorans has been recognized globally as a source of opportunistic infections. It is a yeast-like fungus, and its association as an uncommon pulmonary pathogen with cystic fibrosis patients has been previously reported. Immunocompromised patients are at the highest risk of A. mycotoxinivorans infections. Therefore, to investigate the genetic basis for the pathogenicity of A. mycotoxinivorans, we performed whole-genome sequencing and comparative genomic analysis of A. mycotoxinivorans GMU1709 that was isolated from sputum specimens of a pneumonia patient receiving cardiac repair surgery. The assembly of Oxford Nanopore reads from the GMU1709 strain and its subsequent correction using Illumina paired-end reads yielded a high-quality complete genome with a genome size of 30.5 Mb in length, which comprised six chromosomes and one mitochondrion. Subsequently, 8,066 protein-coding genes were predicted based on multiple pieces of evidence, including transcriptomes. Phylogenomic analysis indicated that A. mycotoxinivorans exhibited the closest evolutionary affinity to A. veenhuisii, and both the A. mycotoxinivorans strains and the formerly Trichosporon cutaneum ACCC 20271 strain occupied the same phylogenetic position. Further comparative analysis supported that the ACCC 20271 strain belonged to A. mycotoxinivorans. Comparisons of three A. mycotoxinivorans strains indicated that the differences between clinical and non-clinical strains in pathogenicity and drug resistance may be little or none. Based on the comparisons with strains of other species in the Trichosporonaceae family, we identified potential key genetic factors associated with A. mycotoxinivorans infection or pathogenicity. In addition, we also deduced that A. mycotoxinivorans had great potential to inactivate some antibiotics (e.g., tetracycline), which may affect the efficacy of these drugs in co-infection. In general, our analyses provide a better understanding of the classification and phylogeny of the Trichosporonaceae family, uncover the underlying genetic basis of A. mycotoxinivorans infections and associated drug resistance, and provide clues into potential targets for further research and the therapeutic intervention of infections.


Asunto(s)
Trichosporon , Genoma Bacteriano , Humanos , Filogenia , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
3.
Microb Drug Resist ; 28(1): 7-17, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34357802

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen, which usually presents multiple antibiotic resistance. Host-directed therapy involves modulating the host defense system and the interplay between innate and adaptive immunity is a new strategy for designing anti-infection drugs. Memantine (MEM), a drug used to treat Alzheimer's disease, has a good inhibitory effect on neonatal mice with Escherichia coli-associated bacteremia and meningitis; however, the inhibitory effect and mechanisms of MEM against P. aeruginosa infection remain unclear. Here, we investigated whether MEM could inhibit P. aeruginosa infection and explored the potential mechanisms. MEM significantly promoted the bactericidal effect of neutrophils against P. aeruginosa and its drug-resistant strain. The combination index of MEM and amikacin (AMK) was <1. In vivo experiments showed that the bacteremia and inflammation severities in the MEM-treated group were less than those in the untreated group, and the bacterial load in the organs was significantly less than that in the control group. Combining MEM with the reactive oxygen species (ROS) inhibitor, N-acetyl-l-cysteine, weakened the anti-infective effect of MEM. MEM increased the expression of NADPH p67phox and promoted neutrophilic ROS production. Deleting the p67phox gene significantly weakened the effects of MEM on ROS generation and improving bactericidal effect of neutrophils. In conclusion, MEM promoted the bactericidal effect of neutrophils against P. aeruginosa and its drug-resistant strain, and had a synergistic antibacterial effect when combined with AMK. MEM may exert its anti-infective effects by promoting neutrophilic bactericidal activity via increasing the expression level of p67phox and further stimulating ROS generation.


Asunto(s)
Amicacina/farmacología , Antibacterianos/farmacología , Memantina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Farmacorresistencia Bacteriana , Neutrófilos/efectos de los fármacos , Fosfoproteínas/efectos de los fármacos , Infecciones por Pseudomonas/prevención & control , Ratas , Ratas Sprague-Dawley
4.
Curr Microbiol ; 77(8): 1381-1389, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32152756

RESUMEN

Two rare strains of Proteus mirabilis with swarming migration deficiency were isolated from urine samples of two patients with urinary tract infections and were named as G121 and G137. Migration experiments showed that P. mirabilis HI4320 had typical migration on blood agar, while G121 and G137 had significantly weakened migration ability. Results of adhesion tests showed that the adhesion ability of G121 and G137 to the bladder epithelial cell line 5637 was significantly reduced. High-throughput sequencing and alignment analysis of the transcriptomes of the three P. mirabilis strains were conducted, with P. mirabilis HI4320 as the reference strain. Reverse transcription quantitative PCR (RT-qPCR) was used to verify differentially expressed genes. Results of transcriptome analysis and RT-qPCR showed that, compared to the HI4320 strain, genes related to flagellum and fimbria formation, dicarboxylate transport, and cystathionine and anthranilate metabolism were down-regulated in G121 and G137, while genes related to iron transport, molybdenum metabolism, and metalloprotease were up-regulated, suggesting that these genes may be involved in the migration ability and epithelial cell adhesion ability of P. mirabilis. These results provide important insight to the search for virulence genes and the screening of new antibacterial targets for P. mirabilis.


Asunto(s)
Perfilación de la Expresión Génica , Infecciones por Proteus/microbiología , Infecciones por Proteus/orina , Proteus mirabilis/genética , Infecciones Urinarias/microbiología , Anciano de 80 o más Años , Adhesión Bacteriana , Proteínas Bacterianas/genética , Línea Celular , Células Epiteliales/microbiología , Femenino , Flagelos , Regulación Bacteriana de la Expresión Génica , Humanos , Persona de Mediana Edad , Movimiento , Proteus mirabilis/aislamiento & purificación , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...