Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
J. physiol. biochem ; 79(2): 313-325, may. 2023.
Artículo en Inglés | IBECS | ID: ibc-222544

RESUMEN

Signaling by the transforming growth factor (TGF)-β superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-β superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-β superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-β superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-β superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research. (AU)


Asunto(s)
Animales , Ratas , Ganglios Espinales , Factor de Crecimiento Transformador beta , Proteínas Morfogenéticas Óseas/fisiología , Grupos Diagnósticos Relacionados , Péptidos y Proteínas de Señalización Intercelular , Dolor
2.
J Physiol Biochem ; 79(2): 313-325, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36696051

RESUMEN

Signaling by the transforming growth factor (TGF)-ß superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-ß superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-ß superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-ß superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-ß superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research.


Asunto(s)
Ganglios Espinales , Factor de Crecimiento Transformador beta , Ratas , Animales , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Morfogenéticas Óseas/fisiología , Péptidos y Proteínas de Señalización Intercelular , Dolor , Grupos Diagnósticos Relacionados
3.
Artículo en Inglés | MEDLINE | ID: mdl-36201267

RESUMEN

BACKGROUND: Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-ß superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-ß superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive. OBJECTIVE: We aimed to plot the transcriptional profiles of transforming growth factor-ß superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain. METHODS: Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-ß superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin ßC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain. RESULTS: The expression of transforming growth factor-ß superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin ßC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model. CONCLUSION: This is the first report to investigate the transcriptional profiles of members of transforming growth factor-ß superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-ß superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.


Asunto(s)
Neuralgia , Factor de Crecimiento Transformador beta , Ratas , Masculino , Animales , Axotomía , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/farmacología , Activinas/genética , Activinas/farmacología , Nervio Ciático/lesiones , Nervio Ciático/patología , Neuralgia/genética , Neuralgia/patología , ARN Mensajero/genética , Inhibinas/farmacología , Factores de Crecimiento Transformadores/farmacología
4.
Neuroreport ; 32(5): 378-385, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33661805

RESUMEN

The myeloid differentiation factor 88 (MyD88) adaptor mediates signaling by Toll-like receptors and some interleukins (ILs) in neural and non-neuronal cells. Recently, MyD88 protein was found to express in primary sensory neurons and be involved in the maintenance of persistent pain induced by complete Freund's adjuvant, chronic constriction injury and chemotherapy treatment in rodents. However, whether MyD88 in nociceptive neurons contributes to persistent pain induced by intraplantar injection of formalin remains elusive. Here, using conditional knockout (CKO) mice, we found that selective deletion of Myd88 in Nav1.8-expressing primary nociceptive neurons led to reduced pain response in the recovery phase of 1% formalin-induced mechanical pain and impaired the persistent thermal pain. Moreover, CKO mice exhibited reduced phase II pain response in 1%, but not 5%, formalin-induced acute inflammatory pain. Finally, nociceptor MyD88 deletion resulted in less neuronal c-Fos activation in spinal dorsal horns following 1% formalin stimulation. These data suggest that MyD88 in nociceptive neurons is not only involved in persistent mechanical pain but also promotes the transition from acute inflammatory pain to persistent thermal hyperalgesia induced by low-dose formalin stimulation.


Asunto(s)
Dolor Agudo/metabolismo , Dolor Crónico/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Nociceptores/metabolismo , Dolor Agudo/inducido químicamente , Animales , Dolor Crónico/inducido químicamente , Formaldehído/toxicidad , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...