Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Langmuir ; 40(20): 10737-10744, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718162

RESUMEN

The flexibility of ligands allows for their bending, twisting, or rotation to adopt various conformations, leading to distinct symmetries during the self-assembled process. Flexible aromatic acid ligands modified by ether bonds are a promising type of self-assembled module when it comes to surfaces. Here, two pentacarboxylic acid ligands (H5L1 and H5L2) with minor skeleton differences have successfully self-assembled into disparate porous networks on the graphite surface and demonstrated excellent potential for the inclusion of guest molecules. The H5L1 molecule's network structure only accommodates coronene (COR) molecules. With fewer COR molecules, H5L1 molecules act as a host template to accommodate the COR molecules. When there are too many COR molecules, COR molecules will induce H5L1 molecules to transform into a new host-guest nanostructure. Additionally, H5L2 molecules showed the ability to capture C70 molecules and exhibited cavity selectivity. However, the assembled network of H5L2 was slightly deformed in attempts to trap the COR molecules. To understand these phenomena more deeply, various assembled mechanisms were analyzed in combination with building theoretical models and energy analysis. These results reveal the great potential of flexible aromatic acid ligands in two-dimensional self-assembly and host-guest systems for their application in related fields.

2.
Nanoscale Adv ; 5(18): 4752-4757, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705796

RESUMEN

In this work, the two-dimensional self-assembly and co-assembly behaviors of two tetracarboxylic acid derivatives (H4BDETP and H4BTB) were investigated by scanning tunneling microscopy (STM). H4BDETP molecules self-assembled into linear nanostructures, and H4BTB molecules formed lamellar and tetragonal nanostructures. The formation of a H4BDETP/H4BTB co-assembly nanostructure was closely related to the deposition sequence of H4BDETP and H4BTB on highly oriented pyrolytic graphite (HOPG). The introduction of H4BTB into the self-assembly system of H4BDETP resulted in the emergence of the H4BDETP/H4BTB nanostructure, while the addition of H4BDETP had no effect on the self-assembly system of H4BTB and a H4BDETP/H4BTB co-assembly nanostructure was not obtained.

3.
Angew Chem Int Ed Engl ; 62(43): e202311482, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37675976

RESUMEN

Detecting CO2 in complex gas mixtures is challenging due to the presence of competitive gases in the ambient atmosphere. Photoelectrochemical (PEC) techniques offer a solution, but material selection and specificity remain limiting. Here, we constructed a hydrogen-bonded organic framework material based on a porphyrin tecton decorated with diaminotriazine (DAT) moieties. The DAT moieties on the porphyrin molecules not only facilitate the formation of complementary hydrogen bonds between the tectons but also function as recognition sites in the resulting porous HOF materials for the selective adsorption of CO2 . In addition, the in-plane growth of FDU-HOF-2 into anisotropic molecular sheets with large areas of up to 23000 µm2 and controllable thickness between 0.298 and 2.407 µm were realized in yields of over 89 % by a simple solution-processing method. The FDU-HOF-2 can be directly grown and deposited onto different substrates including silica, carbon, and metal oxides by self-assembly in situ in formic acid. As a proof of concept, a screen-printing electrode deposited with FDU-HOF-2 was fabricate as a label-free photoelectrochemical (PEC) sensor for CO2 detection. Such a signal-off PEC sensor exhibits low detection limit for CO2 (2.3 ppm), reusability (at least 30 cycles), and long-term working stability (at least 30 days).

4.
Nanoscale ; 15(9): 4353-4360, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36752732

RESUMEN

The supramolecular self-assembly behavior of a pair of low-symmetry tetracarboxylic acid molecules (H4OBDB and H4ADDI) and their co-assembly behavior with TMA as a bridging molecule were studied at the liquid-solid interface. Scanning tunneling microscope (STM) observations revealed that H4OBDB and H4ADDI molecules both tend to form O-shaped dimers but end up forming different types of self-assembly structures. We also investigated the construction of two-component co-assembly structures by mixing H4OBDB or H4ADDI molecules with bridging molecules such as TMA. The two formed co-assembly structures are similar. Based on the analysis of the STM results and the density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.

5.
J Am Chem Soc ; 144(41): 18834-18843, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36201849

RESUMEN

We report a stable, water-soluble, mononuclear manganese(IV) complex [MnIV(H2L)]·5H2O (Mn-HDCL) that acts as an efficient photothermal material. This system is based on a hexahydrazide clathrochelate ligand (L/HDCL) and is obtained via an efficient one-pot templated synthesis that avoids the need for harsh reaction conditions. Scanning tunneling microscopy images reveal that Mn-HDCL exists as a 2D sheet-like structure. In Mn-HDCL, the manganese(IV) ion is trapped within the cavity of the cage-like ligand. This effectively shields the Mn(IV) ion from the external environment while providing adequate water solubility. As a result of orbital transitions involving the coordinated manganese(IV) ion, as well as metal-to-ligand charge transfer effects, Mn-HDCL possesses a large extinction coefficient and displays a photothermal performance comparable to single-wall carbon nanotubes in the solid state. A high photothermal conversion efficiency (ca. 71%) was achieved in aqueous solution when subjected to near-infrared 730 nm laser photo-irradiation. Mn-HDCL is paramagnetic and provides a modest increase in the T1-weighted contrast of magnetic resonance images both in vitro and in vivo. Mn-HDCL was found to target tumors passively and allow tumor margins to be distinguished in vivo in a mouse model. In addition, it also exhibited an efficient laser-triggered photothermal therapy effect in vitro and in vivo. We thus propose that Mn-HDCL could have a role to play as a tumor-targeting photothermal sensitizer.


Asunto(s)
Manganeso , Nanotubos de Carbono , Ratones , Animales , Manganeso/química , Ligandos , Rayos Infrarrojos , Iones , Agua
6.
Angew Chem Int Ed Engl ; 61(43): e202211482, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36068668

RESUMEN

Post-modification of robust guanine-quadruplex-linked 2,2'-pyridine-containing HOF-25 with Ni(ClO4 )2 ⋅ 6 H2 O followed by exfoliation using sonication method affords hydrogen-bonded organic framework (HOF) nanosheets (NSs) of HOF-25-Ni in the yield of 56 %. TEM and AFM technologies disclose the ultrathin nature of HOF-25-Ni NSs with thickness of 4.4 nm. STM observation determines the presence of sql segments assembled from HOF-25-Ni building blocks at the heptanoic acid/highly oriented pyrolytic graphite interface, supporting the simulated 2D supramolecular framework. ICP-MS, XAS, and XPS data prove the successful immobilization of atomic nickel sites on the 20 % total 2,2'-pyridine moieties in crystalline HOF-25-Ni. With the aid of [Ru(bpy)3 ]2+ and triisopropanolamine, 10 wt% HOF-25-Ni NSs dispersed on graphene oxide efficiently promotes visible-light-driven CO2 reduction, showing a 96.3 % CO selectivity with a prominent conversion rate up to 24 323 µmol g-1 h-1 .

7.
ACS Appl Mater Interfaces ; 14(35): 40173-40181, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36006009

RESUMEN

Two-dimensional (2D) materials are promising in reducing friction-induced energy loss and wear in automotive and electronics industries because of their superior tribological performance. As a kind of organic 2D materials, the structure and functionality of covalent organic frameworks (COFs) are much easier to tailor compared to other inorganic 2D materials, which expand their potential application in a Micro-Electro-Mechanical System (MEMS). In this manuscript, several kinds of COFs are synthesized and characterized on the surface of highly oriented pyrolytic graphite (HOPG) to investigate the nanotribological mechanism of organic 2D materials. It is surprisingly revealed that the friction coefficients of surface COFs are positively correlated with the pore sizes of honeycomb networks. The COFs with smaller pores would have a smoother potential energy surface and exhibit a lower friction coefficient. Besides, the porous structures of surface COFs make them good candidates to be host templates. The host-guest assembly structures are successfully constructed after introducing coronene molecules, and these host-guest systems display higher friction coefficients because the assembly structure of the guest molecules would be perturbed during the friction process and bring additional slip energy barriers, but the capacity of COFs to form composite assembly with functional guest molecules greatly promotes their further application in the MEMS.

8.
Chem Commun (Camb) ; 58(71): 9914-9917, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979695

RESUMEN

The co-adsorption behaviours of aromatic carboxylic acids with various pyridine derivatives were investigated with scanning tunneling microscopy and density functional theory. Surprisingly, minor adjustments in the chemical structures of the pyridine derivatives, such as the relative position of the nitrogen atom or the lengths of the side chains on the backbone would evidently affect the intermolecular O-H⋯N hydrogen bonds and further form various co-adsorption structures.


Asunto(s)
Microscopía de Túnel de Rastreo , Piridinas , Adsorción , Enlace de Hidrógeno , Piridinas/química
9.
Langmuir ; 38(28): 8651-8656, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35797253

RESUMEN

In this paper, two new flavonol derivatives, 2-(4-(dodecyloxy)phenyl)-3-hydroxyflavone (DHF) and 2-(3,5-bis(dodecyloxy)phenyl)-3-hydroxyflavone (BDHF), were synthesized to investigate the respective self-assembly behaviors at the liquid/solid interface by scanning tunneling microscopy. In addition, a linear pyridine derivative with acetylene groups called BisPy was added to regulate the assembly of DHF and BDHF, individually. However, only BDHF molecules successfully co-assembled into grid structures with BisPy molecules. Furthermore, the assembly and co-assembly behavior mechanism of flavonol derivatives and BisPy molecules were further studied by density functional theory calculations. This work will lay a foundation for investigating the self-assembly of flavonol derivatives and the co-assembly regulated by pyridine derivatives at the liquid-solid interface.

10.
J Colloid Interface Sci ; 623: 238-246, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35588631

RESUMEN

The self-assembly properties of aggregation-induced emission molecules play important roles in electroluminescence devices and fluorescence sensors because noncovalent interactions in self-assembly structures would accelerate the excitation energy consumption. However, there are only few studies to explore their self-assembly properties on the interface and there is still a great need for further understanding self-assembled mechanisms from the viewpoint of molecular design. Here, we presented three X-shaped aggregation-induced emission molecules X1, X2 and X3, which decorated with different functional groups and alkyl side chains. The self-assembly structures were revealed by scanning tunneling microscopy technique in combination with density functional theory. Results showed that X-shaped molecules self-assembled into different structures, depending on their molecular structure, especially the functional groups. Furthermore, self-assembly structures could be regulated by adjusting solution concentration. In more detail, parallel with gradually increasing solution concentration, the molecules approached closer and molecule-molecule interactions were enhanced, finally resulting in new nanostructures. The self-assembly properties of three X-shaped aggregation-induced emission molecules on the liquid/solid interface would give a guidance for further exploring the aggregation state in three-dimensional space. Meanwhile, the two-dimensional nanostructures might show special properties, which could be used in fabricating next generation functional films.


Asunto(s)
Nanoestructuras , Nanoestructuras/química
11.
Langmuir ; 38(14): 4434-4441, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357166

RESUMEN

Based on previous research, a new coassembly formed by a porphyrin derivative (IPETPP), which contains a flexible substituent of m-phthalic acid, is observed with coronene (COR) molecules at a higher concentration. Besides, a fresh IPETPP self-assembly formed at a lower concentration and another new coassembly with COR molecules are obtained. Moreover, the addition of a series of bipyridines alters the diamond arrangement of IPETPP, which enhances the stability of the two-component structures. It is unprecedented that bipyridine derivatives break intermolecular hydrogen bonds containing m-phthalic acid substituents. All the coassemblies are investigated by scanning tunneling microscopy on a highly oriented pyrolytic graphite. Combined with density functional theory, the formation mechanism of the assembled structures is revealed. These results would contribute to understanding the interfacial crystal behaviors and probably provide an efficient pathway to regulate the binary structures.

12.
Langmuir ; 38(11): 3568-3574, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276043

RESUMEN

The side chains of macrocyclic molecules have a non-negligible effect on the two-dimensional (2D) supramolecular networks at the liquid-solid interface. In this study, we investigate the self-assembly behaviors of two conjugated triphenylamine macrocycles modified with different alkyl chains and construct the host-guest supramolecular nanopatterns on the highly oriented pyrolytic graphite with a scanning tunneling microscope. In combination with density functional theory calculations, how different side chains affect the host-guest interaction is discussed. This work provides insights into constructing a 2D host-guest dynamic co-assembly on the surface.

13.
Nanoscale ; 14(6): 2419-2426, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35098290

RESUMEN

The supramolecular self-assembly behavior of a low-symmetric aromatic carboxylic acid molecule (H5BHB) and its co-assembly behavior with a series of pyridine molecules (BPD, BPDYB and TPDYB) were studied at the heptanoic acid/HOPG liquid-solid interface. Scanning tunneling microscopy (STM) observations revealed that H5BHB molecules tend to form dimeric building blocks which then assemble into a close-packed structure. BPD, BPDYB and TPDYB pyridine molecules were all able to form a stable two-component co-assembled structure with the H5BHB molecule, and in these co-assembled structures, the H5BHB molecule still takes the form of a dimer. It was found that the pyridine molecules were able to regulate the self-assembly structure of the H5BHB molecule, and the molecular arrangement of the co-assembly structures varies with the shape of the pyridine molecules. Based on the analysis of the STM results and density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.

14.
Chem Asian J ; 17(2): e202101246, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34843178

RESUMEN

The macrocyclic molecule [3]C12 TT-TPA was synthesized by a Stille coupling reaction through alternately connecting 4,7-bisthienyl-2,1,3-thienothiazole and triphenylamine units. The concentration-dependent self-assembly structures of [3]C12 TT-TPA were explored in liquid/solid interface by scanning tunneling microscopy and density functional theory. After increasing the solution concentration, five different nanostructures were constructed and the molecular packing densities were gradually enhanced. Those structural transformations from loose structures to compact structures are thermodynamically favourable because those transformations are accompanied by the adsorption of more [3]C12 TT-TPA molecules from liquid phase, which increases the interactions between molecules and the interactions between molecules and substrate considerably. This study of fundamental exploration is important to understand the basic formation mechanisms and the stability of two-dimensional functional materials.


Asunto(s)
Microscopía de Túnel de Rastreo , Nanoestructuras , Adsorción
15.
ACS Appl Mater Interfaces ; 13(49): 58994-59005, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851613

RESUMEN

Non-fullerene acceptors (NFAs) can be simply divided into three categories: A-D-A, A-DA'D-A, and A2-A1-D-A1-A2 according to their chemical structures. Benefiting from the easily modified 1,1-dicyanomethylene-3-indanone end groups, the halogenation on the first two types of materials has been proved to be very effective to modulate their optoelectronic properties and improve their photovoltaic performance. Hence, in this work, we systematically investigate the effect of halogenation on the classic NFA molecule of BTA3, which has the linear A2-A1-D-A1-A2-type backbone. After fluorination and chlorination, F-BTA3 and Cl-BTA3 have similar optical band gaps but lower energy levels than BTA3. When blending with a linear copolymer PE25 composed of benzodifuran and chlorinated benzotriazole (BTA) according to "Same-A-Strategy", the corresponding VOC of the halogenated NFAs gradually decreases (1.13 V for F-BTA3 and 1.09 V for Cl-BTA3), compared with that of the BTA3-based device (VOC = 1.22 V). This tendency mainly comes from the lower lowest unoccupied molecular orbital energy levels due to the strong electron-withdrawing ability of halogen atoms and the larger nonradiative energy loss. However, the power conversion efficiencies of the halogenated materials are slightly improved, from 9.08% for PE25: BTA3 to 10.45% for PE25: F-BTA3 and 10.75% for PE25: Cl-BTA, with the nonhalogenated solvent tetrahydrofuran as the processing solvent. The improved photovoltaic performance of F-BTA3 and Cl-BTA3 should come from the higher carrier mobility, weaker bimolecular recombination, and higher fluorescence quenching rate. This study illustrates that halogenation on the A1 unit is a promising strategy for developing novel and effective A2-A1-D-A1-A2-type NFAs.

16.
Langmuir ; 37(39): 11544-11551, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34546063

RESUMEN

A porphyrin derivative called 5,15-di(4-carboxyphenyl)porphyrin (H2DCPp) with carboxyl groups successfully self-assembled on a highly oriented pyrolytic graphite (HOPG) surface and its co-assembly structures with three kinds of pyridine molecules were investigated by scanning tunneling microscopy (STM) with atomic resolution. H2DCPp arranged in a long-range ordered structure, and both 1,4-bis (pyridin-4-ylethynyl) benzene (BisPy), 4,4'-bipyridine (BP) and 1,3,5-tris(pyridin-4-ylethynyl) benzene (TPYB) molecules successfully regulated the host molecules as guest molecules. The well-organized model optimized by density functional theory (DFT) calculations reveals the detailed behavior of the assembly characteristics and regulation of porphyrin derivatives, which is helpful for the research and development of solar cells and nanodevices.

17.
Front Chem ; 9: 704915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422764

RESUMEN

Boron-dipyrromethenes (BODIPY) are promising functional dyes, whose exceptional optical properties are closely related to their supramolecular assembly. Herein, the self-assembly of a BODIPY derivative functionalized with uracil groups is explicitly and thoroughly investigated by using scanning tunneling microscopy (STM). Based on the simulation and calculation by density functional theory (DFT) method, it can be concluded that the construction of ordered self-assembly structure is attributed to the formation of hydrogen bonds between uracil groups. Moreover, the nanotribological property of the self-assembly on HOPG surface is measured by using atomic force microscopy (AFM). The effort on self-assembly of the BODIPY derivative could enhance the understanding of surface assembly mechanism.

18.
Front Chem ; 9: 707232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422766

RESUMEN

Nowadays, reversible friction regulation has become the focus of scientists in terms of the flexible regulatory structure of photosensitive materials and theories since this facilitates rapid development in this field. Meanwhile, as an external stimulus, light possesses great potential and advantages in spatiotemporal control and remote triggering. In this work, we demonstrated two photo-isomerized organic molecular layers, tetra-carboxylic azobenzene (NN4A) and dicarboxylic azobenzene (NN2A), which were selected to construct template networks on the surface of the highly oriented pyrolytic graphite (HOPG) to study the friction properties, corresponding to the arrangement structure of self-assembled layers under light regulation. First of all, the morphology of the self-assembled layers were characterized by a scanning tunneling microscope (STM), then the nanotribological properties of the template networks were measured by atomic force microscope (AFM). Their friction coefficients are respectively changed by about 0.6 and 2.3 times under light control. The density functional theory (DFT) method was used to calculate the relationship between the force intensity and the friction characteristics of the self-assembled systems under light regulation. Herein, the use of external light stimulus plays a significant role in regulating the friction properties of the interface of the nanometer, hopefully serving as a fundamental basis for further light-controlling research for the future fabrication of advanced on-surface devices.

19.
Nanotechnology ; 32(38)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34098536

RESUMEN

Macrocyclic self-assemblies have gained great interest for diversified structures and potential applications, such as catalysis, magnetism, photovoltaic devices, organic light-emitting diodes. Macrocycles can present regular assembly systems at the liquid/solid interface due to theπ-conjugated structures. Furthermore, suitable guest molecules can be selected for constructing multi-component supramolecular co-assemblies. This review mainly summarizes macrocyclic self-assembly structures with different shapes in recent years. All of the studies are completed with the assistance of scanning tunneling microscope at the liquid/solid interface.

20.
Front Chem ; 9: 668794, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178941

RESUMEN

Liquid crystals are promising molecular materials in the application of lubrication. Herein, the microscale solid superlubricity is accomplished by the construction of uniform and ordered self-assembly of several liquid crystals. The self-assembly structures on a highly oriented pyrolytic graphite (HOPG) surface are explicitly revealed by using scanning tunneling microscopy (STM). Meanwhile, the nanotribological performance of the self-assemblies are measured by using atomic force microscopy (AFM), revealing ultralow friction coefficients lower than 0.01. The interaction energies are calculated by density functional theory (DFT) method, indicating the positive correlation between friction coefficients and interaction strength. The effort on the self-assembly and superlubricity of liquid crystals could enhance the understanding of the nanotribological mechanism and benefit the further application of liquid crystals as lubricants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA