Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Cardiothorac Vasc Anesth ; 38(10): 2261-2268, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39019743

RESUMEN

OBJECTIVES: This study was designed to determine the incidence, contributing factors, and prognostic implications of acute kidney injury (AKI) recovery patterns in patients who experienced AKI after valve replacement surgery (VRS). DESIGN: A retrospective cohort study was conducted. SETTING: The work took place in a postoperative care center in a single large-volume cardiovascular center. PARTICIPANTS: Patients undergoing VRS between January 2010 and December 2019 were enrolled. INTERVENTION: Patients were categorized into three groups based on their postoperative AKI status: non-AKI, AKI with early recovery (less than 48 hours), and persistent AKI. MEASUREMENT AND MAIN RESULTS: The primary outcome was in-hospital major adverse clinical events. The secondary outcomes included in-hospital and 1-year mortality. A total of 4,161 patients who developed AKI following VRS were included. Of these, 1,513 (36.4%) did not develop postoperative AKI, 1,875 (45.1%) experienced AKI with early recovery, and 773 (18.6%) had persistent AKI. Advanced age, diabetes, New York Heart Association III-IV heart failure, moderate-to-severe renal dysfunction, anemia, and AKI stages 2 and 3 were identified as independent risk factors for persistent AKI. In-hospital major adverse clinical events occurred in 59 (3.9%) patients without AKI, 88 (4.7%) with early AKI recovery, and 159 (20.6%) with persistent AKI (p < 0.001). Persistent AKI was independently associated with an increased risk of in-hospital adverse events and 1-year mortality. In contrast, AKI with early recovery did not pose additional risk compared with non-AKI patients. CONCLUSIONS: In patients who develop AKI following VRS, early AKI recovery does not pose additional risk compared with non-AKI. However, AKI lasting more than 48 hours is associated with an increased risk of in-hospital and long-term adverse outcomes.


Asunto(s)
Lesión Renal Aguda , Implantación de Prótesis de Válvulas Cardíacas , Complicaciones Posoperatorias , Humanos , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/diagnóstico , Masculino , Femenino , Estudios Retrospectivos , Anciano , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Recuperación de la Función/fisiología , Factores de Riesgo , Mortalidad Hospitalaria , Persona de Mediana Edad , Estudios de Cohortes , Incidencia , Anciano de 80 o más Años , Factores de Tiempo
2.
Transl Res ; 273: 90-103, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39059761

RESUMEN

Doxorubicin (DOX) is restricted due to its severe cardiotoxicity. There is still a lack of viable and effective drugs to prevent or treat DOX-induced cardiotoxicity(DIC). Vericiguat is widely used to treat heart failure with reduced ejection fraction. However, it is not clear whether vericiguat can improve DIC. In the present study, we constructed a DIC model using mice and neonatal rat cardiomyocytes and found that vericiguat ameliorated DOX-induced cardiac insufficiency in mice, restored DOX-induced mitochondrial dysfunction in neonatal rat cardiomyocytes, and inhibited the expression of inflammatory factors. Further studies showed that vericiguat improved mitochondrial dysfunction and reduced mtDNA leakage into the cytoplasm by up-regulating PRKG1, which activated PINK1 and then inhibited the STING/IRF3 pathway to alleviate DIC. These findings demonstrate for the first time that vericiguat has therapeutic potential for the treatment of DIC.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Proteínas de la Membrana , Miocitos Cardíacos , Proteínas Quinasas , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Proteínas Quinasas/metabolismo , Ratas , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley
3.
Mol Med ; 30(1): 76, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840067

RESUMEN

BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Productos Finales de Glicación Avanzada , Lipoproteínas LDL , FN-kappa B , Osteogénesis , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Productos Finales de Glicación Avanzada/metabolismo , FN-kappa B/metabolismo , Humanos , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/patología , Cricetinae , Osteogénesis/efectos de los fármacos , Masculino , Lipoproteínas LDL/metabolismo , Modelos Animales de Enfermedad , Femenino , Persona de Mediana Edad , Proteinas Glicosiladas
4.
Exp Mol Med ; 56(7): 1560-1573, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38945954

RESUMEN

Calcific aortic valve disease (CAVD) is becoming an increasingly important global medical problem, but effective pharmacological treatments are lacking. Noncoding RNAs play a pivotal role in the progression of cardiovascular diseases, but their relationship with CAVD remains unclear. Sequencing data revealed differential expression of many noncoding RNAs in normal and calcified aortic valves, with significant differences in circHIPK3 and miR-182-5p expression. Overexpression of circHIPK3 ameliorated aortic valve lesions in a CAVD mouse model. In vitro experiments demonstrated that circHIPK3 inhibits the osteogenic response of aortic valve interstitial cells. Mechanistically, DEAD-box helicase 5 (DDX5) recruits methyltransferase 3 (METTL3) to promote the N6-methyladenosine (m6A) modification of circHIPK3. Furthermore, m6A-modified circHIPK3 increases the stability of Kremen1 (Krm1) mRNA, and Krm1 is a negative regulator of the Wnt/ß-catenin pathway. Additionally, miR-182-5p suppresses the expression of Dickkopf2 (Dkk2), the ligand of Krm1, and attenuates the Krm1-mediated inhibition of Wnt signaling. Activation of the Wnt signaling pathway significantly contributes to the promotion of aortic valve calcification. Our study describes the role of the Krm1-Dkk2 axis in inhibiting Wnt signaling in aortic valves and suggests that noncoding RNAs are upstream regulators of this process.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular , MicroARNs , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Ratones , Calcinosis/genética , Calcinosis/metabolismo , Calcinosis/patología , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , MicroARNs/genética , MicroARNs/metabolismo , Vía de Señalización Wnt , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Humanos , Metiltransferasas/metabolismo , Metiltransferasas/genética , ARN Circular/genética , ARN Circular/metabolismo , Masculino
5.
Mol Med ; 30(1): 15, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254035

RESUMEN

BACKGROUND: In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes. METHODS: In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatography‒mass spectrometry (LC‒MS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis. RESULTS: AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed. CONCLUSION: Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.


Asunto(s)
Estenosis de la Válvula Aórtica , Ferroptosis , Insuficiencia Cardíaca , Ácidos Cetoglutáricos , Mitofagia , Angiotensina II , Cromatografía Liquida , Ferroptosis/efectos de los fármacos , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Hipertrofia , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/uso terapéutico , Mitofagia/efectos de los fármacos , Miocitos Cardíacos , NAD , Proteínas Quinasas , ARN Interferente Pequeño , Sirtuina 1 , Espectrometría de Masas en Tándem , Animales , Ratones
6.
Open Med (Wars) ; 18(1): 20230878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152337

RESUMEN

Post-myocardial infarction heart failure (HF) is a major public health concern. Previous studies have reported the critical role of immune response in HF pathogenesis. However, limited studies have reported predictive immune-associated biomarkers for HF. So we attempted to identify potential immune-related indicators for HF early diagnosis and therapy guidance. This study identified two potential immune-related hub genes (IRHGs), namely CXCR5 and FOS, using bioinformatic approaches. The expression levels of CXCR5 and FOS and their ability to predict long-term HF were analyzed. Functional enrichment analysis revealed that the hub genes were enriched in immune system processes, including the interleukin-17 and nuclear factor-kappa B signaling pathways, which are involved in the pathogenesis of HF. Quantitative real-time polymerase chain reaction revealed that the Fos mRNA levels, but not the Cxcr5 mRNA levels, were downregulated in the mice of the HF group. This study successfully identified two IRHGs that were significantly and differentially expressed in the HF group and could predict long-term HF, providing novel insights for future studies on HF and developing novel therapeutic targets for HF.

9.
BMC Med ; 21(1): 252, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443055

RESUMEN

BACKGROUND: Calcific aortic valve disease (CAVD) is the most prevalent valvular disease and has high morbidity and mortality. CAVD is characterized by complex pathophysiological processes, including inflammation-induced osteoblastic differentiation in aortic valve interstitial cells (AVICs). Novel anti-CAVD agents are urgently needed. Protein tyrosine phosphatase nonreceptor type 22 (PTPN22), an intracellular nonreceptor-like protein tyrosine phosphatase, is involved in several chronic inflammatory diseases, including rheumatoid arthritis and diabetes. However, it is unclear whether PTPN22 is involved in the pathogenesis of CAVD. METHODS: We obtained the aortic valve tissue from human and cultured AVICs from aortic valve. We established CAVD mice model by wire injury. Transcriptome sequencing, western bolt, qPCR, and immunofluorescence were performed to elucidate the molecular mechanisms. RESULTS: Here, we determined that PTPN22 expression was upregulated in calcific aortic valve tissue, AVICs treated with osteogenic medium, and a mouse model of CAVD. In vitro, overexpression of PTPN22 induced osteogenic responses, whereas siRNA-mediated PTPN22 knockdown abolished osteogenic responses and mitochondrial stress in the presence of osteogenic medium. In vivo, PTPN22 ablation ameliorated aortic valve lesions in a wire injury-induced CAVD mouse model, validating the pathogenic role of PTPN22 in CAVD. Additionally, we discovered a novel compound, 13-hydroxypiericidin A 10-O-α-D-glucose (1 → 6)-ß-D-glucoside (S18), in a marine-derived Streptomyces strain that bound to PTPN22 with high affinity and acted as a novel inhibitor. Incubation with S18 suppressed osteogenic responses and mitochondrial stress in human AVICs induced by osteogenic medium. In mice with aortic valve injury, S18 administration markedly alleviated aortic valve lesions. CONCLUSION: PTPN22 plays an essential role in the progression of CAVD, and inhibition of PTPN22 with S18 is a novel option for the further development of potent anti-CAVD drugs. Therapeutic inhibition of PTPN22 retards aortic valve calcification through modulating mitochondrial dysfunction in AVICs.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Humanos , Animales , Ratones , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Monoéster Fosfórico Hidrolasas , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/genética , Células Cultivadas , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo
10.
Sci Adv ; 9(22): eadg0478, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267365

RESUMEN

Hemodynamic overload and dysregulation of cellular metabolism are involved in development of calcific aortic valve disease (CAVD). However, how mechanical stress relates to metabolic changes in CAVD remains unclear. Here, we show that Piezo1, a mechanosensitive ion channel, regulated glutaminase 1 (GLS1)-mediated glutaminolysis to promote osteogenic differentiation of valve interstitial cells (VICs). In vivo, two models of aortic valve stenosis were constructed by ascending aortic constriction (AAC) and direct wire injury (DWI). Inhibition of Piezo1 and GLS1 in these models respectively mitigated aortic valve lesion. In vitro, Piezo1 activation induced by Yoda1 and oscillatory stress triggered osteogenic responses in VICs, which were prevented by Piezo1 inhibition or knockdown. Mechanistically, Piezo1 activation promoted calcium-dependent Yes-associated protein (YAP) activation. YAP modulated GLS1-mediated glutaminolysis, which enhanced osteogenic differentiation through histone acetylation of runt-related transcription factor 2 (RUNX2) promoters. Together, our work provided a cross-talk between mechanotransduction and metabolism in the context of CAVD.


Asunto(s)
Válvula Aórtica , Osteogénesis , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Osteogénesis/genética , Mecanotransducción Celular , Células Cultivadas , Diferenciación Celular/genética
11.
Biology (Basel) ; 12(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37106782

RESUMEN

Both mitochondrial quality control and energy metabolism are critical in maintaining the physiological function of cardiomyocytes. When damaged mitochondria fail to be repaired, cardiomyocytes initiate a process referred to as mitophagy to clear defective mitochondria, and studies have shown that PTEN-induced putative kinase 1 (PINK1) plays an important role in this process. In addition, previous studies indicated that peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator that promotes mitochondrial energy metabolism, and mitofusin 2 (Mfn2) promotes mitochondrial fusion, which is beneficial for cardiomyocytes. Thus, an integration strategy involving mitochondrial biogenesis and mitophagy might contribute to improved cardiomyocyte function. We studied the function of PINK1 in mitophagy in isoproterenol (Iso)-induced cardiomyocyte injury and transverse aortic constriction (TAC)-induced myocardial hypertrophy. Adenovirus vectors were used to induce PINK1/Mfn2 protein overexpression. Cardiomyocytes treated with isoproterenol (Iso) expressed high levels of PINK1 and low levels of Mfn2, and the changes were time dependent. PINK1 overexpression promoted mitophagy, attenuated the Iso-induced reduction in MMP, and reduced ROS production and the apoptotic rate. Cardiac-specific overexpression of PINK1 improved cardiac function, attenuated pressure overload-induced cardiac hypertrophy and fibrosis, and facilitated myocardial mitophagy in TAC mice. Moreover, metformin treatment and PINK1/Mfn2 overexpression reduced mitochondrial dysfunction by inhibiting ROS generation leading to an increase in both ATP production and mitochondrial membrane potential in Iso-induced cardiomyocyte injury. Our findings indicate that a combination strategy may help ameliorate myocardial injury by improving mitochondrial quality.

12.
BMC Cardiovasc Disord ; 23(1): 104, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823527

RESUMEN

OBJECTIVE: Recent studies have found that polycyclic aromatic hydrocarbons (PAHs) exposure may increase the risk of cardiovascular disease. The present study aimed to explore the association between PAHs exposure and severe abdominal aortic calcification (AAC) in adults. METHODS: Data were collected from the 2013-2014 National Health and Nutrition Examination Survey. PAHs exposure was analyzed from urinary mono hydroxylated metabolites of PAHs. Logistic regression models and subgroup analysis were performed to explore the association of PAHs exposure with severe AAC prevalence. RESULTS: A total of 1,005 eligible individuals were recruited into the study. After adjusting for confounding factors, those with the highest quartiles of 1-hydroxynaphthalene (1-NAP: OR 2.19, 95% CI 1.03-4.68, Pfor trend < 0.001), 2-hydroxynaphthalene (2-NAP: OR 2.22, 95% CI 1.04-4.64, Pfor trend < 0.001) and 1-hydroxypyrene (1-PYR: OR 2.15, 95% CI 1.06-4.33, Pfor trend < 0.001) were associated with an increased prevalence of severe AAC in the adults compared to those who in the lowest quartile. CONCLUSION: This study found that urinary 1-NAP, 2-NAP and 1-PYR were positively associated with severe AAC prevalence in adults.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Humanos , Adulto , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Encuestas Nutricionales , Naftalenosulfonatos , Biomarcadores
13.
Atherosclerosis ; 364: 1-9, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455343

RESUMEN

BACKGROUND AND AIMS: The osteogenic transition of aortic valve interstitial cells (AVICs) plays a critical role for the progression of calcific aortic valve disease (CAVD). Enhancer of zeste homolog 2 (EZH2) is an important methyltransferase for histone H3 Lys27 (H3K27) that has been found to be involved in osteogenesis. Here, we investigated the effect and mechanism of EZH2 in CAVD progression. METHODS: High throughout mRNA sequencing, qRT-PCR and immunoblot were performed to screen differentially expressed genes in non-CAVD and CAVD aortic valves. To investigate the role of EZH2 and SOCS3 in osteogenesis, AVICs were treated with siRNA, adenovirus and specific inhibitors, then osteogenic markers and mineralized deposits were examined. In vivo, the morphology and function of aortic valves were investigated by HE stain and echocardiography in ApoE-/- mice fed a long-term western diet (WD). RESULTS: We discovered that EZH2 was upregulated and SOCS3 was downregulated in calcified aortic valves. In AVICs, inhibition or silencing of EZH2 attenuated the osteogenic responses. On the other hand, demethylases inhibitor (GSK-J4) enhanced osteogenic transition of AVICs. Moreover, SOCS3 knockdown enhanced the expression of osteogenic markers, while SOCS3 overexpression suppressed osteogenesis and calcification. The chromatin immunoprecipitation and restored experiments indicated that EZH2 directly targeted SOCS3 to promote osteogenic responses of AVICs. In vivo, treatment with EZH2 inhibitor through intraperitoneal injection attenuated aortic valve thickening, calcification and dysfunction induced by WD. CONCLUSIONS: Collectively, we found that EZH2-mediated H3K27me3 enhanced osteogenesis and microcalcification of AVICs via inhibiting SOCS3 expression, which provides potential targets for future therapeutic interventions of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Proteína Potenciadora del Homólogo Zeste 2 , Osteogénesis , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Ratones , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/metabolismo , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/farmacología , Histonas/metabolismo , Osteogénesis/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Epigénesis Genética
15.
Front Cardiovasc Med ; 9: 1042139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531735

RESUMEN

Objective: Heart failure with mildly reduced ejection fraction (HFmrEF) has been recently recognized as a unique phenotype of heart failure (HF) in current practical guideline. However, risk stratification models for mortality and HF re-hospitalization are still lacking. This study aimed to develop and validate a novel machine learning (ML)-derived model to predict the risk of mortality and re-hospitalization for HFmrEF patients. Methods: We assessed the risks of mortality and HF re-hospitalization in HFmrEF (45-49%) patients enrolled in the TOPCAT trial. Eight ML-based models were constructed, including 72 candidate variables. The Harrell concordance index (C-index) and DeLong test were used to assess discrimination and the improvement in discrimination between models, respectively. Calibration of the HF risk prediction model was plotted to obtain bias-corrected estimates of predicted versus observed values. Results: Least absolute shrinkage and selection operator (LASSO) Cox regression was the best-performing model for 1- and 6-year mortality, with a highest C-indices at 0.83 (95% CI: 0.68-0.94) over a maximum of 6 years of follow-up and 0.77 (95% CI: 0.64-0.89) for the 1-year follow-up. The random forest (RF) showed the best discrimination for HF re-hospitalization, scoring 0.80 (95% CI: 0.66-0.94) and 0.85 (95% CI: 0.71-0.99) at the 6- and 1-year follow-ups, respectively. For risk assessment analysis, Kansas City Cardiomyopathy Questionnaire (KCCQ) subscale scores were the most important predictor of readmission outcome in the HFmrEF patients. Conclusion: ML-based models outperformed traditional models at predicting mortality and re-hospitalization in patients with HFmrEF. The results of the risk assessment showed that KCCQ score should be paid increasing attention to in the management of HFmrEF patients.

16.
PeerJ ; 10: e14307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518291

RESUMEN

Background: Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods: M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results: DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion: M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.


Asunto(s)
Válvula Aórtica , Vesículas Extracelulares , Osteogénesis/genética , Mitofagia/genética , Calcio/metabolismo , Macrófagos , Diferenciación Celular/genética , Vesículas Extracelulares/genética
17.
Antioxidants (Basel) ; 11(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36358465

RESUMEN

BACKGROUND: No effective therapeutic agents for calcific aortic valve disease (CAVD) are available currently. Dietary supplementation has been proposed as a novel treatment modality for various diseases. As a flavanone, hesperetin is widely abundant in citrus fruits and has been proven to exert protective effects in multiple diseases. However, the role of hesperetin in CAVD remains unclear. METHODS: Human aortic valve interstitial cells (VICs) were isolated from aortic valve leaflets. A mouse model of aortic valve stenosis was constructed by direct wire injury (DWI). Immunoblotting, immunofluorescence staining, and flow cytometry were used to investigate the roles of sirtuin 7 (Sirt7) and nuclear factor erythroid 2-related factor 2 (Nrf2) in hesperetin-mediated protective effects in VICs. RESULTS: Hesperetin supplementation protected the mice from wire-injury-induced aortic valve stenosis; in vitro, hesperetin inhibited the lipopolysaccharide (LPS)-induced activation of NF-κB inflammatory cytokine secretion and osteogenic factors expression, reduced ROS production and apoptosis, and abrogated LPS-mediated injury to the mitochondrial membrane potential and the decline in the antioxidant levels in VICs. These benefits of hesperetin may have been obtained by activating Nrf2-ARE signaling, which corrected the dysfunctional mitochondria. Furthermore, we found that hesperetin could directly bind to Sirt7 and that the silencing of Sirt7 decreased the effects of hesperetin in VICs and potently abolished the ability of hesperetin to increase Nrf2 transcriptional activation. CONCLUSIONS: Our work demonstrates that hesperetin plays protective roles in the aortic valve through the Sirt7-Nrf2-ARE axis; thus, hesperetin might be a potential dietary supplement that could prevent the development of CAVD.

18.
Inquiry ; 59: 469580221117743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938197

RESUMEN

The avalanche of Corona Virus 2019 (COVID-19) cases has placed an unprecedented load on Afghanistan's government and public health authorities, putting the country in jeopardy. The primary goal of this research was to shed light on the country's capital, Kabul, and to examine the existing preparedness and perceptions of its population in the midst of COVID-19's third wave, which could result in decentralization and fragmentation of the already overburdened health-care system. An online, cross-sectional survey was conducted by the lecturers of the Kabul University of Medical Sciences between April 15, 2021 and April 25, 2021, to evaluate the preparedness of the Kabul citizens amidst the third wave of COVID-19. About 1736 citizens from Kabul participated in the survey. Data was analyzed using Statistical Package for Social Sciences (SPSS) version 25. All categorical variables were reported using frequencies and percentages. The findings revealed that the most common source of COVID-19-related information was social media (74.8%). In addition, 34.4% of subjects had previously been infected with COVID-19. It was reassuring to see that 78.4% of residents said they knew more about COVID-19 than they did about prior COVID-19 waves. A majority (81.5%) expressed willingness to resist the third wave, but 89.4% said that the country's government would be unable to develop an effective COVID-19 vaccine within the next 6 months. The findings of this present study indicates that citizens of Kabul are active in obtaining accurate information and disseminating it in the community. The citizens also reported sufficient COVID-19 related knowledge; however, they were more motivated to fight against the third wave of COVID-19. In regards to vaccination, they believed that the government could not vaccinate the public anytime soon. Hence, the enactment of non-pharmaceutical measures is important in the fight against the pandemic.


Asunto(s)
COVID-19 , Afganistán/epidemiología , Vacunas contra la COVID-19 , Estudios Transversales , Humanos , Opinión Pública
19.
Vasc Health Risk Manag ; 18: 643-652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003849

RESUMEN

Objective: Evidence from previous studies suggests that calcific aortic valve disease (CAVD) is not an unavoidable consequence of aging, and may be linked to explicit risk factors. However, little is known regarding the Afghan population in this context. The current study aimed to identify the clinical features of CAVD and determine independent risk factors for CAVD in the Afghan population. Patients and Methods: A case-control study was conducted among 1072 Afghan participants (age >18 years) from January 2018 to December 2020. The study participants were divided into two groups based on echocardiographic findings: 536 individuals with CAVD and 536 age- and sex-matched controls. Data were collected using questionnaires from the medical records of all cases and controls. The independent predictors of CAVD were evaluated using multivariate logistic regression analysis. Results: The mean age of study participants was 65.3 ± 13.5 years (range, 20-100 years). Of the 536 patients with CAVD, 77 (14.4%) had aortic valve stenosis, 415 (77.4%) had aortic valve calcification, and 44 (8.2%) had bicuspid aortic valve. Multivariate logistic regression analysis revealed that sedentary lifestyle (odds ratio [OR] = 2.517, p = 003), diabetes mellitus (DM) (OR = 1.902, p = 006), high body mass index (BMI ≥ 30 kg/m2) (OR = 1.776, p = 005), good socioeconomic status (OR = 1.724, p = 021), and hypertension (OR = 1.664, p ˂0.001) were independent risk factors for CAVD in the Afghan population. Conclusion: It was observed that sedentary lifestyle, diabetes mellitus, high BMI (≥ 30 kg/m2), good socioeconomic status, and hypertension are independent risk factors for the development of CAVD compared to those with a normal aortic valve in the Afghan population.


Asunto(s)
Estenosis de la Válvula Aórtica , Hipertensión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/epidemiología , Calcinosis , Estudios de Casos y Controles , Humanos , Hipertensión/diagnóstico , Hipertensión/epidemiología , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
20.
Oxid Med Cell Longev ; 2022: 6776050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035206

RESUMEN

Calcific aortic valve disease (CAVD) is a valvular disease frequently in the elderly individuals that can lead to the valve dysfunction. Osteoblastic differentiation of human aortic valve interstitial cells (HAVICs) induced by inflammation play a crucial role in CAVD pathophysiological processes. To date, no effective drugs for CAVD have been established, and new agents are urgently needed. Piericidin glycosides, obtained from a marine-derived Streptomyces strain, were revealed to have regulatory effects on mitochondria in previous studies. Here, we discovered that 13-hydroxypiericidin A 10-O-α-D-glucose (1→6)-ß-D-glucoside (S18), a specific piericidin diglycoside, suppresses lipopolysaccharide- (LPS) induced inflammatory responses of HAVICs by alleviating mitochondrial stress in an interleukin (IL)-37-dependent manner. Knockdown of IL-37 by siRNA not only exaggerated LPS-induced HAVIC inflammation and mitochondrial stress but also abrogated the anti-inflammatory effect of S18 on HAVICs. Moreover, S18 alleviated aortic valve lesions in IL-37 transgenic mice of CAVD model. Microscale thermophoresis (MST) and docking analysis of five piericidin analogues suggested that diglycosides, but not monoglycosides, exert obvious IL-37-binding activity. These results indicate that S18 directly binds to IL-37 to alleviate inflammatory responses in HAVICs and aortic valve lesions in mice. Piericidin diglycoside S18 is a potential therapeutic agent to prevent the development of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Glicósidos , Interleucina-1 , Animales , Válvula Aórtica/patología , Calcinosis , Células Cultivadas , Glicósidos/farmacología , Humanos , Inflamación , Interleucina-1/metabolismo , Interleucinas , Lipopolisacáridos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA