Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
iScience ; 25(9): 104859, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36034226

RESUMEN

Allo-HSCT is a curative therapy for hematologic malignancies owing to GvL effect mediated by alloreactive T cells; however, the same T cells also mediate GvHD, a severe side effect limiting the widespread application of allo-HSCT in clinics. Invariant natural killer T (iNKT) cells can ameliorate GvHD while preserving GvL effect, but the clinical application of these cells is restricted by their scarcity. Here, we report the successful generation of third-party HSC-engineered human iNKT (3rdHSC-iNKT) cells using a method combining HSC gene engineering and in vitro HSC differentiation. The 3rdHSC-iNKT cells closely resembled the CD4-CD8-/+ subsets of endogenous human iNKT cells in phenotype and functionality. These cells displayed potent anti-GvHD functions by eliminating antigen-presenting myeloid cells in vitro and in xenograft models without negatively impacting tumor eradication by allogeneic T cells in preclinical models of lymphoma and leukemia, supporting 3rdHSC-iNKT cells as a promising off-the-shelf cell therapy candidate for GvHD prophylaxis.

2.
Cell Rep Med ; 2(11): 100449, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34841295

RESUMEN

Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.


Asunto(s)
Células Alogénicas/inmunología , Ingeniería Celular , Células Madre Hematopoyéticas/inmunología , Inmunoterapia , Células T Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Células Alogénicas/metabolismo , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica , Antígenos HLA/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células T Asesinas Naturales/metabolismo , Fenotipo , Receptores Quiméricos de Antígenos/metabolismo , Transcriptoma/genética
3.
Methods Mol Biol ; 2388: 35-57, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34524660

RESUMEN

Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that recognize lipid antigens presented by nonpolymorphic major histocompatibility complex (MHC) I-like molecule CD1d. iNKT cells play essential roles in regulating immune responses against cancer, viral infection, autoimmune disease, and allergy. However, the study and application of iNKT cells have been hampered by their very small numbers (0.01-1% in mouse and human blood). Here, we describe protocols to (1) generate mouse iNKT cells from mouse mononuclear cells or from mouse hematopoietic stem cells engineered with iNKT T cell receptor (TCR) gene (denoted as mMNC-iNKT cells or mHSC-iNKT cells, respectively), (2) generate human iNKT cells from human peripheral blood mononuclear cells or from human HSC cells engineered with iNKT TCR gene (denoted as hPBMC-iNKT cells or hHSC-iNKT cells, respectively), and (3) characterize mouse and human iNKT cells in vitro and in vivo.


Asunto(s)
Células T Asesinas Naturales , Animales , Antígenos CD1d/genética , Galactosilceramidas , Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad , Humanos , Ratones , Células T Asesinas Naturales/inmunología , Neoplasias
4.
Nat Commun ; 12(1): 3530, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112755

RESUMEN

Targeting tumor-associated macrophages (TAMs) is a promising strategy to modify the immunosuppressive tumor microenvironment and improve cancer immunotherapy. Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain; small molecule MAO inhibitors (MAOIs) are clinically used for treating neurological disorders. Here we observe MAO-A induction in mouse and human TAMs. MAO-A-deficient mice exhibit decreased TAM immunosuppressive functions corresponding with enhanced antitumor immunity. MAOI treatment induces TAM reprogramming and suppresses tumor growth in preclinical mouse syngeneic and human xenograft tumor models. Combining MAOI and anti-PD-1 treatments results in synergistic tumor suppression. Clinical data correlation studies associate high intratumoral MAOA expression with poor patient survival in a broad range of cancers. We further demonstrate that MAO-A promotes TAM immunosuppressive polarization via upregulating oxidative stress. Together, these data identify MAO-A as a critical regulator of TAMs and support repurposing MAOIs for TAM reprogramming to improve cancer immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Neoplasias/tratamiento farmacológico , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estimación de Kaplan-Meier , Linfoma/genética , Linfoma/metabolismo , Linfoma/mortalidad , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidad , Ratones , Ratones Endogámicos C57BL , Monoaminooxidasa/deficiencia , Monoaminooxidasa/genética , Inhibidores de la Monoaminooxidasa/uso terapéutico , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/mortalidad , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Sci Immunol ; 6(59)2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990379

RESUMEN

Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain, where it breaks down neurotransmitters and thereby influences mood and behavior. Small-molecule MAO inhibitors (MAOIs) have been developed and are clinically used for treating depression and other neurological disorders. However, the involvement of MAO-A in antitumor immunity has not been reported. Here, we observed induction of the Maoa gene in tumor-infiltrating immune cells. Maoa knockout mice exhibited enhanced antitumor T cell immunity and suppressed tumor growth. MAOI treatment significantly suppressed tumor growth in preclinical mouse syngeneic and human xenograft tumor models in a T cell-dependent manner. Combining MAOI and anti-PD-1 treatments generated synergistic tumor suppression effects. Clinical data correlation studies associated intratumoral MAOA expression with T cell dysfunction and decreased patient survival in a broad range of cancers. We further demonstrated that MAO-A restrains antitumor T cell immunity through controlling intratumoral T cell autocrine serotonin signaling. Together, these data identify MAO-A as an immune checkpoint and support repurposing MAOI antidepressants for cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Inmunoterapia , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/inmunología , Neoplasias/terapia , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Femenino , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Monoaminooxidasa/genética , Neoplasias/inmunología , Neoplasias/patología
6.
Proc Natl Acad Sci U S A ; 117(49): 31219-31230, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229527

RESUMEN

Type 1 diabetes (T1D) results from the autoimmune destruction of ß cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of ß cells. It is known that ß cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of ß cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments ß cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing ß cells, Sox9+ ductal progenitors, Nestin+ mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) ß cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of ß cells and transdifferentiation of α cells can provide sufficient new functional ß cells to reach euglycemia in firmly established T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Regeneración/genética , Animales , Autoinmunidad/genética , Glucemia/efectos de los fármacos , Transdiferenciación Celular/genética , Quimerismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Factor de Crecimiento Epidérmico/farmacología , Femenino , Gastrinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucagón/biosíntesis , Células Secretoras de Glucagón/metabolismo , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Endogámicos NOD/genética , Células Precursoras de Linfocitos B/efectos de los fármacos
8.
Nat Biotechnol ; 32(12): 1223-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25402613

RESUMEN

Direct lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice. Detailed molecular analyses of induced beta cells over 7 months reveal that global DNA methylation changes occur within 10 d, whereas the transcriptional network evolves over 2 months to resemble that of endogenous beta cells and remains stable thereafter. Progressive gain of beta-cell function occurs over 7 months, as measured by glucose-regulated insulin release and suppression of hyperglycemia. These studies demonstrate that lineage-reprogrammed cells persist for >1 year and undergo epigenetic, transcriptional, anatomical and functional development toward a beta-cell phenotype.


Asunto(s)
Células Acinares/citología , Linaje de la Célula , Diabetes Mellitus Experimental/terapia , Células Secretoras de Insulina/patología , Animales , Glucemia , Diferenciación Celular/genética , Metilación de ADN/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Humanos , Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/patología , Ratones , Ratones Endogámicos NOD
9.
Lab Invest ; 91(8): 1136-45, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21519326

RESUMEN

The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily and a sensor and detoxifier of both xenobiotics and endobiotics. Recent studies also show that CAR participates in metabolism of glucose and lipid, and has an important role in fatty liver disease and diabetes. In this study, we investigate the roles of CAR in chronic and acute alcohol-induced liver injuries. The results showed that absence of CAR in rodents led to significantly increased susceptibility to chronic alcohol-induced liver injury, which was accompanied with elevated hepatocyte apoptosis and fat accumulation. However, pre-activation of CAR by a CAR agonist, TCPOBOP, strongly enhanced the hepatic toxicity by both chronic and acute alcohol infusion in wild-type, but not in CAR(-/-) mice. Gene expression analyses indicated that CAR pre-activation and alcohol infusion synergistically decreased the expression of enzymes that metabolize the alcohol in liver. These results support a role of CAR in modulating alcoholic liver injury and imply a risk of synergistic liver toxicity induced by alcohol and CAR activation.


Asunto(s)
Etanol/efectos adversos , Hepatopatías Alcohólicas/metabolismo , Hígado/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Solventes/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Receptor de Androstano Constitutivo , Etanol/administración & dosificación , Etanol/metabolismo , Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas , Solventes/administración & dosificación , Solventes/metabolismo
10.
Hepatology ; 52(6): 2148-57, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20979124

RESUMEN

UNLABELLED: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by interacting with the 3' untranslated region (3'-UTR) of multiple mRNAs. Recent studies have linked miRNAs to the development of cancer metastasis. In this study, we show that miR-194 is specifically expressed in the human gastrointestinal tract and kidney. Moreover, miR-194 is highly expressed in hepatic epithelial cells, but not in Kupffer cells or hepatic stellate cells, two types of mesenchymal cells in the liver. miR-194 expression was decreased in hepatocytes cultured in vitro, which had undergone a dedifferentiation process. Furthermore, expression of miR-194 was low in liver mesenchymal-like cancer cell lines. The overexpression of miR-194 in liver mesenchymal-like cancer cells reduced the expression of the mesenchymal cell marker N-cadherin and suppressed invasion and migration of the mesenchymal-like cancer cells both in vitro and in vivo. We further demonstrated that miR-194 targeted the 3'-UTRs of several genes that were involved in epithelial-mesenchymal transition and cancer metastasis. CONCLUSION: These results support a role of miR-194, which is specifically expressed in liver parenchymal cells, in preventing liver cancer cell metastasis.


Asunto(s)
Neoplasias Hepáticas/patología , MicroARNs/fisiología , Metástasis de la Neoplasia/prevención & control , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Hígado/metabolismo , Neoplasias Pulmonares/secundario , Ratones , MicroARNs/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA