Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 11(7): 1741-1751, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38288665

RESUMEN

Achieving both high emission efficiency and exciton utilization efficiency (ηS) in hot exciton materials is still a formidable task. Herein, a proof-of-concept design for improving ηS in hot exciton materials is proposed via elaborate regulation of singlet-triplet energy difference, leading to an additional thermally activated delayed fluorescence (TADF) process. Two novel dendrimers, named D-TTT-H and D-TTT-tBu, were prepared and characterized, in which diphenylamine derivatives were used as a donor moiety and tri(triazolo)triazine (TTT) as an acceptor fragment. Compounds D-TTT-H and D-TTT-tBu showed an intense green color with an emission efficiency of approximately 80% in solution. Impressively, both dendrimers simultaneously exhibited a hot exciton process and TADF characteristic in the solid state, as was demonstrated via theoretical calculation, transient photoluminescence, magneto-electroluminescence and transient electroluminescence measurements, thus achieving almost unity ηS. A solution processable organic light-emitting diode (OLED) employing the dendrimer as a dopant represents the best performance with the highest luminance of 15090 cd m-2 and a maximum external quantum efficiency (EQEmax) of 11.96%. Moreover, using D-TTT-H as a sensitizer, an EQEmax of 30.88%, 24.08% and 14.33% were achieved for green, orange and red solution-processed OLEDs, respectively. This research paves a new avenue to construct a fluorescent molecule with high ηS for efficient and stable OLEDs.

2.
Adv Mater ; 35(13): e2208602, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36653735

RESUMEN

In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.

3.
Chem Commun (Camb) ; 59(11): 1473-1476, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36651725

RESUMEN

Two kinds of chiral hosts, named (R/S)-BN-mCP and (R/S)-BN-2mCP, are prepared. Solution processable circularly polarized organic light-emitting diodes (CP-OLEDs) based on the chiral hosts and achiral emitter Ir(mypp)3 present the maximum external quantum efficiency (EQEmax) and dissymmetry factor values (gEL) of 12.7%/-1.7 × 10-3 and 17.1%/-1.3 × 10-3, respectively. Using (R)-BN-2mCP as the chiral host and Ir(mypp)3 and Ir(piq)2(acac) as the achiral emitters, the solution-processed OLED exhibits a broad emission spectrum with the EQEmax of 12.1% and gEL of -1.1 × 10-3.

4.
ACS Appl Mater Interfaces ; 14(13): 15437-15447, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35323008

RESUMEN

Realizing both high efficiency and liquid crystallinity in one molecule remains a challenge in thermally activated delayed fluorescence (TADF) emission. Herein, two isomeric compounds─m-DPSAc-LC and p-DPSAc-LC with different connection positions between donor and acceptor moieties─were synthesized and characterized. Diphenylsulfone (DPS) was used as the acceptor, acridine (Ac) was used as the donor, and biphenyl derivatives (LC) were employed as the mesogenic group. Both compounds showed a smectic mesophase evidenced by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and temperature-dependent small-angle X-ray scattering (SAXS). The compound p-DPSAc-LC clearly exhibited thermally activated delayed fluorescence due to the much more distorted geometry, whereas m-DPSAc-LC showed simple fluorescence. Compared to the parent TADF molecules without appended mesogenic groups (DPS-Ac), these liquid-crystalline emitters possessed higher hole mobilities and improved device performance. The OLEDs fabricated via solution processing using the liquid-crystalline compound p-DPSAc showed a maximum external quantum efficiency of ∼15% and as such is the first example of a liquid-crystalline TADF material in an OLED device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...