Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plants (Basel) ; 11(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35270135

RESUMEN

Cool-season creeping bentgrass (Agrostis stolonifera) has the ability to form fine sports turf, but high temperatures result in summer bentgrass decline (SBD), especially in transitional and subtropical zones. Physiological responses in combination with the alteration in turf quality (TQ) will contribute to a better understanding of SBD in a subtropical zone. Field experiments were conducted from 2017 to 2019 to test the adaptability to summer stress among four cultivars (13M, Penncross, Seaside II, and PA-1). A constant ambient high temperature above 30 °C significantly decreased the TQ of the four cultivars during the summer months in 2017, 2018, and 2019. Significant declines in the chlorophyll content, photochemical efficiency of photosystem II (Fv/Fm and PIABS), leaf relative water content (RWC), and osmotic potential (OP) were induced by summer stress, whereas gradual increases in water-soluble carbohydrates, proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL) were observed in the four cultivars during the summer months. The 13M and Penncross cultivars exhibited better performance than Seaside II and PA-1 in response to summer stress from 2017 to 2019, which is associated with better maintenance of photosynthesis, water status, WSC and proline accumulation, and cell membrane stability. The 13M and Penncross cultivars could be used as potential candidates for turf establishment in a subtropical zone. Physiological responses together with alterations in TQ also provided critical information for the breeding and development of germplasm with heat tolerance in creeping bentgrass species.

2.
J Colloid Interface Sci ; 616: 401-412, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35220187

RESUMEN

Two-dimensional (2D) layered materials hold great promise for electrochemical energy storage due to their unique structure. It is always desirable to explore new-type high-performance 2D structured electrode materials in energy field. In this work, layered transition-metal chalcogenophosphite is developed as the electrode material for supercapacitors for the first time. NiPS3 nanosheet arrays are successfully in-situ grown on carbon cloth via a chemical vapor deposition method, and then directly used as the self-supported electrode for supercapacitors. The fabricated carbon cloth supported NiPS3 nanosheet arrays offer obviously superior electrochemical performance to the powdery NiPS3 nanosheets sample. The self-supported NiPS3 electrode exhibits a high specific capacitance of 1148F g-1 at a current density of 1 A g-1, and a good cycling stability with capacitance retention of 81.4% over 5000 cycles at 10 A g-1. Moreover, the assembled asymmetric supercapacitor device delivers a specific capacitance of 61.3F g-1 at a current density of 1 A g-1, and an energy density of 19.2 Wh kg-1 at a power density of 750 W kg-1 with a voltage window of 1.5 V. This work is of great significance for pioneering the application of 2D transition-metal chalcogenophosphites in supercapacitors.

3.
Front Plant Sci ; 12: 709187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394164

RESUMEN

Drought is a serious outcome of climate change reducing the productivity of forage species under arid and semi-arid conditions worldwide. Diethyl aminoethyl hexanoate (DA-6), a novel plant growth regulator, has proven to be involved in the amelioration of critical physiological functions in many agricultural crops under various abiotic stresses, but the role of the DA-6 in improving seed germination has never been investigated under drought stress. The present study was carried out to elucidate the impact of the DA-6 priming on seeds germination of white clover under drought stress. Results showed that seed priming with the DA-6 significantly mitigated the drought-induced reduction in germination percentage, germination vigor, germination index, seed vigor index, root length, shoot length, and fresh weight after 7 days of seed germination. The DA-6 significantly increased the endogenous indole-3-acetic acid, gibberellin, and cytokinin content with marked reduction in abscisic acid content in seedlings under drought stress. In addition, the DA-6 significantly accelerated starch catabolism by enhancing the activities of hydrolases contributing toward enhanced soluble sugars, proline content and ameliorated the antioxidant defense system to enhance the ability of reactive oxygen species scavenging under drought stress. Furthermore, exogenous DA-6 application significantly increased dehydrins accumulation and upregulated transcript levels of genes encoding dehydrins (SK2, Y2SK, or DHNb) during seeds germination under water deficient condition. These findings suggested that the DA-6 mediated seeds germination and drought tolerance associated with changes in endogenous phytohormones resulting in increased starch degradation, osmotic adjustment, antioxidants activity, and dehydrins accumulation during seed germination under water deficient condition.

4.
Antioxidants (Basel) ; 10(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356332

RESUMEN

Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid-glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.

5.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050389

RESUMEN

γ-Aminobutyric acid (GABA) plays an important role in regulating stress tolerance in plants. Purposes of this study was to determine the effect of an exogenous supply of GABA on tolerance to water stress in creeping bentgrass (Agrostis stolonifera), and further reveal the GABA-induced key mechanisms related to water balance, nitrogen (N) metabolism and nitric oxide (NO) production in response to water stress. Plants were pretreated with or without 0.5 mM GABA solution in the roots for 3 days, and then subjected to water stress induced by -0.52 MPa polyethylene glycol 6000 for 12 days. The results showed that water stress caused leaf water deficit, chlorophyll (Chl) loss, oxidative damage (increases in superoxide anion, hydrogen peroxide, malondialdehyde, and protein carbonyl content), N insufficiency, and metabolic disturbance. However, the exogenous addition of GABA significantly increased endogenous GABA content, osmotic adjustment and antioxidant enzyme activities (superoxide dismutase, catalase, dehydroascorbate reductase, glutathione reductase and monodehydroascorbate reductase), followed by effectively alleviating water stress damage, including declines in oxidative damage, photoinhibition, and water and Chl loss. GABA supply not only provided more available N, but also affected N metabolism through activating nitrite reductase and glutamine synthetase activities under water stress. The supply of GABA did not increase glutamate content and glutamate decarboxylase activity, but enhanced glutamate dehydrogenase activity, which might indicate that GABA promoted the conversion and utilization of glutamate for maintaining Chl synthesis and tricarboxylic acid cycle when creeping bentgrass underwent water stress. In addition, GABA-induced NO production, depending on nitrate reductase and NO-associated protein pathways, could be associated with the enhancement of antioxidant defense. Current findings reveal the critical role of GABA in regulating signal transduction and metabolic homeostasis in plants under water-limited condition.


Asunto(s)
Agrostis/fisiología , Sequías , Óxido Nítrico/metabolismo , Nitrógeno/metabolismo , Transducción de Señal , Estrés Fisiológico , Agua/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adaptación Biológica , Estrés Oxidativo
6.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961841

RESUMEN

γ-Aminobutyric acid (GABA) participates in the regulation of adaptability to abiotic stress in plants. The objectives of this study were to investigate the effects of GABA priming on improving thermotolerance in creeping bentgrass (Agrostis stolonifera) based on analyses of physiology and proteome using iTRAQ technology. GABA-treated plants maintained significantly higher endogenous GABA content, photochemical efficiency, performance index on absorption basis, membrane stability, and osmotic adjustment (OA) than untreated plants during a prolonged period of heat stress (18 days), which indicated beneficial effects of GABA on alleviating heat damage. Protein profiles showed that plants were able to regulate some common metabolic processes including porphyrin and chlorophyll metabolism, glutathione metabolism, pyruvate metabolism, carbon fixation, and amino acid metabolism for heat acclimation. It is noteworthy that the GABA application particularly regulated arachidonic acid metabolism and phenylpropanoid biosynthesis related to better thermotolerance. In response to heat stress, the GABA priming significantly increased the abundances of Cu/ZnSOD and APX4 that were consistent with superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. The GABA-upregulated proteins in relation to antioxidant defense (Cu/ZnSOD and APX4) for the reactive oxygen species scavenging, heat shock response (HSP90, HSP70, and HSP16.9) for preventing denatured proteins aggregation, stabilizing abnormal proteins, promoting protein maturation and assembly, sugars, and amino acids metabolism (PFK5, ATP-dependent 6-phosphofructokinase 5; FK2, fructokinase 2; BFRUCT, ß-fructofuranosidase; RFS2, galactinol-sucrose galactosyltransferase 2; ASN2, asparagine synthetase 2) for OA and energy metabolism, and transcription factor (C2H2 ZNF, C2H2 zinc-finger protein) for the activation of stress-defensive genes could play vital roles in establishing thermotolerance. Current findings provide an illuminating insight into the new function of GABA on enhancing adaptability to heat stress in plants.


Asunto(s)
Agrostis/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Estrés Fisiológico/efectos de los fármacos , Termotolerancia/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Aminoácidos/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Ontología de Genes , Respuesta al Choque Térmico/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Proteínas de Plantas/genética , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
Plant Cell Physiol ; 61(9): 1576-1589, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32544243

RESUMEN

Spermine (Spm) regulates water balance involved in water channel proteins, aquaporins (AQPs), in plants. An increase in endogenous Spm content via exogenous Spm application significantly improved cell membrane stability, photosynthesis, osmotic adjustment (OA) and water use efficiency (WUE) contributing to enhanced tolerance to water stress in white clover. Spm upregulated TrTIP2-1, TrTIP2-2 and TrPIP2-7 expressions and also increased the abundance of TIP2 and PIP2-7 proteins in white clover under water stress. Spm quickly activated intracellular Ca2+ signaling and Spm-induced TrTIP2-2 and TrPIP2-7 expressions could be blocked by Ca2+ channel blockers and the inhibitor of Ca2+-dependent protein kinase in leaves of white clover. TrSAMS in relation to Spm biosynthesis was first cloned from white clover and the TrSAMS was located in the nucleus. Transgenic Arabidopsis overexpressing the TrSAMS had significantly higher endogenous Spm content and improved cell membrane stability, photosynthesis, OA, WUE and transcript levels of AtSIP1-1, AtSIP1-2, AtTIP2-1, AtTIP2-2, AtPIP1-2, AtPIP2-1 and AtNIP2-1 than wild type in response to water stress. Current findings indicate that Spm regulates water balance via an enhancement in OA, WUE and water transport related to Ca2+-dependent AQP expression in plants under water stress.


Asunto(s)
Acuaporina 2/metabolismo , Proteínas de Plantas/metabolismo , Espermina/fisiología , Acuaporina 2/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Clonación Molecular , Deshidratación , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Espermina/metabolismo , Trifolium/metabolismo , Trifolium/fisiología , Agua/metabolismo
8.
J Proteome Res ; 19(2): 769-780, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31916766

RESUMEN

The global emergence of soil salinization poses a serious challenge to many countries and regions. γ-Aminobutyric acid (GABA) is involved in systemic regulation of plant adaptation to salt stress but the underlying molecular and metabolic mechanism still remains largely unknown. The elevated endogenous GABA level by the application of exogenous GABA improved salt tolerance associated with the enhancement of antioxidant capacity, photosynthetic characteristics, osmotic adjustment (OA), and water use efficiency in creeping bentgrass. GABA strongly upregulated transcript levels of AsPPa2, AsATPaB2, AsNHX2/4/6, and AsSOS1/20 in roots involved in enhanced capacity of Na+ compartmentalization and mitigation of Na+ toxicity in the cytosol. Significant downregulation of AsHKT1/4 expression could be induced by GABA in leaves in relation to maintenance of the significantly lower Na+ content and higher K+/Na+ ratio. GABA-depressed aquaporin expression and accumulation induced declines in stomatal conductance and transpiration, thereby reducing water loss in leaves during salt stress. For metabolic regulation, GABA primarily enhanced sugar and amino acid accumulation and metabolism, largely contributing to improved salt tolerance through maintaining OA and metabolic homeostasis. Other major pathways could be related to GABA-induced salt tolerance including increases in antioxidant defense, heat shock proteins, and myo-inositol accumulation in leaves. Integrative analyses of molecular, protein, metabolic, and physiological changes reveal systemic functions of GABA in regulating ionic, water, and metabolic homeostasis in nonhalophytic creeping bentgrass under salt stress.


Asunto(s)
Agrostis , Homeostasis , Proteómica , Tolerancia a la Sal/genética , Estrés Fisiológico , Agua , Ácido gamma-Aminobutírico
9.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149642

RESUMEN

The objective of this study was to determine the effect of soaking with γ-aminobutyric acid (GABA) on white clover (Trifolium repens cv. Haifa) seed germination under salt stress induced by 100 mM NaCl. Seeds soaking with GABA (1 µM) significantly alleviated salt-induced decreases in endogenous GABA content, germination percentage, germination vigor, germination index, shoot and root length, fresh and dry weight, and root activity of seedling during seven days of germination. Exogenous application of GABA accelerated starch catabolism via the activation of amylase and also significantly reduced water-soluble carbohydrate, free amino acid, and free proline content in seedlings under salt stress. In addition, improved antioxidant enzyme activities (SOD, GPOX, CAT, APX, DHAR, GR and MDHR) and gene transcript levels (Cu/ZnSOD, FeSOD, MnSOD, CAT, GPOX, APX, MDHR, GPX and GST) was induced by seeds soaking with GABA, followed by decreases in O2∙-, H2O2, and MDA accumulation during germination under salt stress. Seeds soaking with GABA could also significantly improve Na⁺/K⁺ content and transcript levels of genes encoding Na⁺/K⁺ transportation (HKT1, HKT8, HAL2, H⁺-ATPase and SOS1) in seedlings of white clover. Moreover, exogenous GABA significantly induced the accumulation of dehydrins and expression of genes encoding dehydrins (SK2, Y2K, Y2SK, and dehydrin b) in seedlings under salt stress. These results indicate that GABA mitigates the salt damage during seeds germination through enhancing starch catabolism and the utilization of sugar and amino acids for the maintenance of growth, improving the antioxidant defense for the alleviation of oxidative damage, increasing Na⁺/K⁺ transportation for the osmotic adjustment, and promoting dehydrins accumulation for antioxidant and osmotic adjustment under salt stress.


Asunto(s)
Germinación , Tolerancia a la Sal/genética , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico/genética , Trifolium/genética , Trifolium/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potasio/metabolismo , Plantones/efectos de los fármacos , Sodio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Trifolium/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...