Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124236, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615415

RESUMEN

In this work, a colorimetric aptasensor based on magnetic beads (MBs), gold nanoparticles (AuNPs) and Horseradish Peroxidase (HRP) was prepared for the detection of mucin 1 (MUC1). Complementary DNA of the MUC1 aptamer (Apt) immobilized on the MBs was combined with the prepared AuNPs-Apt-HRP complex (AuNPs@Apt-HRP). In the presence of MUC1, it specifically bound to Apt, resulting in the detachment of gold nanoparticles from the MBs. After magnetic separation, AuNPs@Apt-HRP was separated into the supernatant and reacted with 3,3',5,5'-Tetramethylbenzidine (TMB) to produce color reaction from colorless to blue. The linear range of MUC1 was from 75 to 500 µg/mL (R2 = 0.9878), and the detection limit was 41.95 µg/mL. The recovery rate of MUC1 in human serum was 99.18 %∼101.15 %. This method is simple and convenient. Moreover, it does not require complex and expensive equipment for detection of MUC1. It provides value for the development of MUC1 colorimetric sensors and a promising strategy for the determination of MUC1 in clinical diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Bencidinas , Técnicas Biosensibles , Colorimetría , Oro , Límite de Detección , Nanopartículas del Metal , Mucina-1 , Mucina-1/análisis , Mucina-1/sangre , Colorimetría/métodos , Oro/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Humanos , Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo
2.
PLoS One ; 19(2): e0292479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38349923

RESUMEN

Recombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness. Here, we describe the directed evolution of novel lambda integrase variants capable of editing exogenous target sequences identified in the diatom Phaeodactylum tricornutum and the algae Nannochloropsis oceanica. These microorganisms hold great promise as conduits for green biomanufacturing and carbon sequestration. The evolved enzyme variants show >1000-fold switch in specificity towards the non-natural target sites when assayed in vitro. A single-copy target motif in the human genome with homology to the Nannochloropsis oceanica site can also be efficiently targeted using an engineered integrase, both in vitro and in human cells. The developed integrase variants represent useful additions to the DNA editing toolbox, with particular application for targeted genomic insertion of large DNA cargos.


Asunto(s)
Diatomeas , Estramenopilos , Humanos , Integrasas/genética , Genoma Humano/genética , ADN , Genómica , Diatomeas/genética , Estramenopilos/genética , Edición Génica
3.
BMC Pulm Med ; 24(1): 76, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336682

RESUMEN

BACKGROUND: Severe asthma places a large burden on patients and society. The characteristics of patients with severe asthma in the Chinese population remain unclear. METHODS: A retrospective review was conducted in patients with severe asthma. Demographic and clinical data were collected. Patients were grouped according to phenotypes in terms of exacerbations, body mass index (BMI) and fixed airway obstruction (FAO) status, and the characteristics of different groups were compared. Comorbidities, factors that influence asthma phenotypes, were also analyzed in the study. RESULTS: A total of 228 patients with severe asthma were included in our study. They were more likely to be overweight or obese. A total of 41.7% of the patients received GINA step 5 therapy, and 43.4% had a history of receiving regular or intermittent oral corticosteroids (OCS). Severe asthmatic patients with comorbidities were prone to have more asthma symptoms and decreased quality of life than patients without comorbidities. Patients with exacerbations were characterized by longer duration of asthma, poorer lung function, and worse asthma control. Overweight or obese patients tended to have more asthma symptoms, poorer lung function and more asthma-related comorbidities. Compared to patients without FAO, those in the FAO group were older, with longer duration of asthma and more exacerbations. CONCLUSION: The existence of comorbidities in patients with severe asthma could result in more asthma symptoms and decreased quality of life. Patients with exacerbations or with overweight or obese phenotypes were characterized by poorer lung function and worse asthma control. Patients with FAO phenotype tended to have more exacerbations.


Asunto(s)
Obstrucción de las Vías Aéreas , Asma , Humanos , Sobrepeso/epidemiología , Calidad de Vida , Asma/tratamiento farmacológico , Obstrucción de las Vías Aéreas/epidemiología , Obesidad/epidemiología
4.
Eur J Pharmacol ; 966: 176317, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38216081

RESUMEN

Oxidative stress and endoplasmic reticulum stress (ERS) was associated with the development of asthma. Edaravone (EDA) plays a classical role to prevent the occurrence and development of oxidative stress-related diseases. Herein, we investigated the involvement and signaling pathway of EDA in asthma, with particular emphasis on its impact on type 2 innate lymphoid cells (ILC2) and CD4+T cells, and then further elucidated whether EDA could inhibit house dust mite (HDM)-induced allergic asthma by affecting oxidative stress and ERS. Mice received intraperitoneally injection of EDA (10 mg/kg, 30 mg/kg), dexamethasone (DEX) and N-acetylcysteine (NAC), with the latter two used as positive control drugs. DEX and high dose of EDA showed better therapeutic effects in alleviating airway inflammation and mucus secretion in mice, along with decreasing eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) than NAC. Further, the protein levels of IL-33 in lung tissues were inhibited by EDA, leading to reduced activation of ILC2s in the lung. EDA treatment alleviated the activation of CD4+ T cells in lung tissues of HDM-induced asthmatic mice and reduced Th2 cytokine secretion in BALF. ERS-related markers (p-eIF2α, IRE1α, CHOP, GRP78) were decreased after treatment of EDA compared to HDM group. Malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) were detected to evaluate the oxidant stress in lung tissues. EDA showed a protective effect against oxidant stress. In conclusion, our findings demonstrated that EDA could suppress allergic airway inflammation by inhibiting oxidative stress and ERS, suggesting to serve as an adjunct medication for asthma in the future.


Asunto(s)
Asma , Inmunidad Innata , Ratones , Animales , Edaravona/farmacología , Edaravona/uso terapéutico , Citocinas/metabolismo , Endorribonucleasas/metabolismo , Peróxido de Hidrógeno/farmacología , Linfocitos , Proteínas Serina-Treonina Quinasas/metabolismo , Asma/metabolismo , Pulmón , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Oxidativo , Oxidantes/farmacología , Pyroglyphidae/metabolismo , Modelos Animales de Enfermedad
5.
Respir Res ; 25(1): 57, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267973

RESUMEN

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare disease which is easily misdiagnosed. Vascular endothelial growth factor D (VEGF-D), as the most common biomarker, however, is not so perfect for the diagnosis and severity assessment of LAM. MATERIALS AND METHODS: The isobaric tags for relative and absolute quantitation (iTRAQ)-based method was used to identify a cytoskeleton protein, moesin. 84 patients with LAM, 44 patients with other cystic lung diseases (OCLDs), and 37 healthy control subjects were recruited for collecting blood samples and clinical data. The levels of moesin in serum were evaluated by ELISA. The relationships of moesin with lymphatic involvement, lung function, and treatment decision were explored in patients with LAM. RESULTS: The candidate protein moesin was identified by the proteomics-based bioinformatic analysis. The serum levels of moesin were higher in patients with LAM [219.0 (118.7-260.5) pg/mL] than in patients with OCLDs (125.8 ± 59.9 pg/mL, P < 0.0001) and healthy women [49.6 (35.5-78.9) ng/mL, P < 0.0001]. Moesin had an area under the receiver operator characteristic curve (AUC) of 0.929 for predicting LAM diagnosis compared to healthy women (sensitivity 81.0%, specificity 94.6%). The combination of moesin and VEGF-D made a better prediction in differentiating LAM from OCLDs than moesin or VEGF-D alone. Moreover, elevated levels of moesin were related to lymphatic involvement in patients with LAM. Moesin was found negatively correlated with FEV1%pred, FEV1/FVC, and DLCO%pred (P = 0.0181, r = - 0.3398; P = 0.0067, r = - 0.3863; P = 0.0010, r = - 0.4744). A composite score combining moesin and VEGF-D improved prediction for sirolimus treatment, compared with each biomarker alone. CONCLUSION: Higher levels of moesin in serum may indicate impaired lung function and lymphatic involvement in patients with LAM, suggest a more serious condition, and provide clinical guidance for sirolimus treatment.


Asunto(s)
Linfangioleiomiomatosis , Proteínas de Microfilamentos , Humanos , Femenino , Linfangioleiomiomatosis/diagnóstico , Factor D de Crecimiento Endotelial Vascular , Biomarcadores , Sirolimus
6.
Cell Signal ; 113: 110964, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956773

RESUMEN

BACKGROUND: The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD: House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS: Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION: Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.


Asunto(s)
Asma , FN-kappa B , Animales , Humanos , Ratones , Asma/tratamiento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factor 10 de Crecimiento de Fibroblastos/farmacología , Factor 10 de Crecimiento de Fibroblastos/uso terapéutico , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Pulmón/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Inorg Chem ; 63(1): 613-620, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38102774

RESUMEN

The self-assembly of the lanthanide metal-organic frameworks presents a formidable challenge but profound significance. Compared with the metal-organic frameworks based on 4f-3d ions, the chemistry of 4f-3p metal-organic frameworks has not been fully explored so far. In this study, two lanthanide-aluminum-based clusters [Ln6Al(IN)10(µ3-OH)5(µ3-O)3(H2O)8]·xH2O (x = 2, Ln = Gd, abbreviated as Gd6Al; x = 2.5, Ln = Eu, abbreviated as Eu6Al; HIN = isonicotinic acid) have been meticulously designed and obtained by hydrothermal reaction at low pH. The crystallographic study revealed that both Gd6Al and Eu6Al clusters exhibit an unprecedented sandwiched metal-organic framework holding a highly ordered honeycomb network. To our knowledge, it is the first case of Ln-Al-based cluster-organic frameworks. Furthermore, magnetic investigation of Gd6Al manifests a decent magnetic entropy change of -ΔSmmax = 28.8 J kg-1 K-1 at 2 K for ΔH = 7.0 T. Significantly, the introduction of AlIII ions into the lanthanide metal-organic frameworks displays excellent solid-state luminescent capability with a lifetime of 371.6 µs and quantum yield of 6.64%. The construction and investigation of these two Ln-Al clusters represent great progress in the 4f-3p metal-organic framework.

8.
BMC Public Health ; 23(1): 1358, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452308

RESUMEN

Highly educated immigrants are part of the growing population of immigrants who are impacted by the increasingly hostile migration policies in the U.S. This qualitative study used a phenomenological approach and inductive reasoning to explore the possible impacts of migration integration policies as social determinants of health among this group. Data was collected through 31 semi-structured interviewees with highly educated immigrants who had an intention and interest to stay in the U.S. at the time of the interview. Data were analyzed using reflexive thematic analysis and four main themes emerged: (1) a life overshadowed by silent worries, (2) living through uncertainties and forced decisions as the result of migration integration policies, (3) complexities and challenges of living on a work visa, and (4) shared recommendations by interviewees. Documented narratives as part of this study suggest high rates of stress and anxiety as well as negative mental and physical health outcomes among the participants. Results also suggest high levels of internalized vulnerabilities. Participants shared that migration policies can be enhanced in the U.S. to support highly educated immigrants' growth by creating a better and more transparent communication system, replacing random review processes for applications with systematic procedures, creating expedited pathways to citizenship based on merit, and granting access to work as a basic human right.


Asunto(s)
Emigrantes e Inmigrantes , Determinantes Sociales de la Salud , Humanos , Estados Unidos/epidemiología , Política Pública , Factores Sociales , Ansiedad
9.
BMC Infect Dis ; 23(1): 440, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386364

RESUMEN

BACKGROUND: Hydrogen/oxygen therapy contribute to ameliorate dyspnea and disease progression in patients with respiratory diseases. Therefore, we hypothesized that hydrogen/oxygen therapy for ordinary coronavirus disease 2019 (COVID-19) patients might reduce the length of hospitalization and increase hospital discharge rates. METHODS: This retrospective, propensity-score matched (PSM) case-control study included 180 patients hospitalized with COVID-19 from 3 centers. After assigned in 1:2 ratios by PSM, 33 patients received hydrogen/oxygen therapy and 55 patients received oxygen therapy included in this study. Primary endpoint was the length of hospitalization. Secondary endpoints were hospital discharge rates and oxygen saturation (SpO2). Vital signs and respiratory symptoms were also observed. RESULTS: Findings confirmed a significantly lower median length of hospitalization (HR = 1.91; 95% CIs, 1.25-2.92; p < 0.05) in the hydrogen/oxygen group (12 days; 95% CI, 9-15) versus the oxygen group (13 days; 95% CI, 11-20). The higher hospital discharge rates were observed in the hydrogen/oxygen group at 21 days (93.9% vs. 74.5%; p < 0.05) and 28 days (97.0% vs. 85.5%; p < 0.05) compared with the oxygen group, except for 14 days (69.7% vs. 56.4%). After 5-day therapy, patients in hydrogen/oxygen group exhibited a higher level of SpO2 compared with that in the oxygen group (98.5%±0.56% vs. 97.8%±1.0%; p < 0.001). In subgroup analysis of patients received hydrogen/oxygen, patients aged < 55 years (p = 0.028) and without comorbidities (p = 0.002) exhibited a shorter hospitalization (median 10 days). CONCLUSION: This study indicated that hydrogen/oxygen might be a useful therapeutic medical gas to enhance SpO2 and shorten length of hospitalization in patients with ordinary COVID-19. Younger patients or those without comorbidities are likely to benefit more from hydrogen/oxygen therapy.


Asunto(s)
COVID-19 , Humanos , Estudios de Casos y Controles , Estudios Retrospectivos , COVID-19/terapia , Oxígeno/uso terapéutico , Hidrógeno/uso terapéutico
10.
Environ Pollut ; 330: 121789, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164219

RESUMEN

Inorganic mineral particles play an important role in the formation of atmospheric aerosols in the Sichuan Basin. Atmospheric haze formation is accompanied by the phase transition of mineral particles under high humidity and stable climatic conditions. Backward trajectory analysis was used in this study to determine the migration trajectory of atmospheric mineral particles. Furthermore, Positive matrix factorization (PMF) was used to analyze the sources of atmospheric mineral particles. The phase transition mechanisms of atmospheric mineral particles were studied using ion chromatography, inductively coupled plasma emission spectrometry, total organic carbon analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive spectrometry, and grand canonical Monte Carlo methods. Three migration and phase transition paths were identified for the mineral particles. Sources of atmospheric mineral particles included combustion, vehicle emissions, industrial emissions, agricultural sources, and mineral dust. The main mineral phases in atmospheric particles, calcite and dolomite, were transformed into gypsum, and muscovite may be transformed into kaolinite. The phase transition of mineral particles seriously affects the formation of aerosols and worsens haze. Typically, along the Nanchong-Suining-Neijiang-Zigong-Yibin path, calcite is converted into gypsum under the influence of man-made inorganic pollution gases, which worsen the haze conditions and cause slight air pollution for 3-5 days. However, along the Guangyuan-Mianyang-Deyang-Chengdu-Meishan-Ya'an path, anthropogenic volatile organic compounds (VOCs) hindered gypsum formation from dolomite. Furthermore, dolomite and VOCs formed stable adsorption systems (system energies from -0.41 to -4.76 eV, long bonds from 0.20 to 0.24 nm). The adsorption system of dolomite and m/p-xylene, with low system energy (-1.46 eV/-1.33 eV) and significant correlation (r2 = 0.991, p < 0.01), was the main cause of haze formation. Consequently, calcite gypsification and dolomite--VOC synergism exacerbated regional haze conditions. This study provides a theoretical reference for the mechanism of aerosol formation in basin climates.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Sulfato de Calcio/análisis , Estaciones del Año , Carbonato de Calcio/análisis , Emisiones de Vehículos/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos , China
11.
Artículo en Inglés | MEDLINE | ID: mdl-37100272

RESUMEN

Ferroptosis is a type of regulated cell death that is dependent on iron and reactive oxygen species (ROS). Melatonin (N-acetyl-5-methoxytryptamine) reduces hypoxic-ischemic brain damage via mechanisms that involve free radical scavenging. How melatonin regulates radiation-induced ferroptosis of hippocampal neurons is yet to be elucidated. In this study, the mouse hippocampal neuronal cell line HT-22 was treated with 20µM melatonin before being stimulated with a combination of irradiation and 100 µM FeCl3. Furthermore, in vivo experiments were performed in mice treated with melatonin via intraperitoneal injection, which was followed by radiation exposure. A series of functional assays, including CCK-8, DCFH-DA kit, flow cytometry, TUNEL staining, iron estimations, and transmission electron microscopy, were performed on cells as well as hippocampal tissues. The interactions between PKM2 and NRF2 proteins were detected using a coimmunoprecipitation (Co-IP) assay. Moreover, chromatin immunoprecipitation (ChIP), a luciferase reporter assay, and an electrophoretic mobility shift assay (EMSA) were performed to explore the mechanism by which PKM2 regulates the NRF2/GPX4 signaling pathway. The spatial memory of mice was evaluated using the Morris Water Maze test. Hematoxylin-eosin and Nissl staining were performed for histological examination. The results revealed that melatonin protected HT-22 neuronal cells from radiation-induced ferroptosis, as inferred from increased cell viability, decreased ROS production, reduced number of apoptotic cells, and less cristae, higher electron density in mitochondria. In addition, melatonin induced PKM2 nuclear transference, while PKM2 inhibition reversed the effects of melatonin. Further experiments demonstrated that PKM2 bound to and induced the nuclear translocation of NRF2, which regulated GPX4 transcription. Ferroptosis enhanced by PKM2 inhibition was also converted by NRF2 overexpression. In vivo experiments indicated that melatonin alleviated radiation-induced neurological dysfunction and injury in mice. In conclusion, melatonin suppressed ferroptosis to decrease radiation-induced hippocampal neuronal injury by activating the PKM2/NRF2/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Enfermedad de Hashimoto , Melatonina , Animales , Ratones , Melatonina/farmacología , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Transducción de Señal , Neuronas , Hipocampo , Hierro
12.
Ecotoxicol Environ Saf ; 256: 114839, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989558

RESUMEN

Particulate matter (PM) has become the main risk factor for public health, being linked with an increased risk of respiratory diseases. However, the potential mechanisms underlying PM-induced lung injury have not been well elucidated. In this study, we systematically integrated the metabolomics, lipidomics, and transcriptomics data obtained from the human bronchial epithelial cells (HBECs) exposed to PM to reveal metabolic disorders in PM-induced lung injury. We identified 170 differentially expressed metabolites (82 upregulated and 88 downregulated metabolites), 218 differentially expressed lipid metabolites (125 upregulated and 93 downregulated lipid metabolites), and 1417 differentially expressed genes (643 upregulated and 774 downregulated genes). Seven key metabolites (prostaglandin E2, inosinic acid, L-arginine, L-citrulline, L-leucine, adenosine, and adenosine monophosphate), and two main lipid subclasses (triglyceride and phosphatidylcholine) were identified in PM-exposed HBECs. The amino acid metabolism, lipid metabolism, and carbohydrate metabolism were the significantly enriched pathways of identified differentially expressed genes. Then, conjoint analysis of these three omics data and further qRT-PCR validation showed that arachidonic acid metabolism, glycerolipid metabolism, and glutathione metabolism were the key metabolic pathways in PM-exposed HBECs. The knockout of AKR1C3 in arachidonic acid metabolism or GPAT3 in glycerolipid metabolism could significantly inhibit PM-induced inflammatory responses in HBECs. These results revealed the potential metabolic pathways in PM-exposed HBECs and provided a new target to protect from PM-induced airway damage.


Asunto(s)
Lesión Pulmonar , Material Particulado , Humanos , Material Particulado/efectos adversos , Ácido Araquidónico/metabolismo , Lesión Pulmonar/inducido químicamente , Células Epiteliales/metabolismo , Metabolismo de los Lípidos
13.
Heliyon ; 9(2): e13467, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36814617

RESUMEN

At the 75th session of the United Nations General Assembly, China clearly put forward the goals of "carbon peak" in 2030 and "carbon neutrality" in 2060. Achievement of carbon targets. Therefore, the goal of this paper is to analyze the low-carbon development level of China's power industry and study the impact of carbon market policies on the low-carbon development level of the power industry. Based on this, this paper first constructs the low-carbon development evaluation index system of the power industry around the connotation of low-carbon development in the power industry and uses the global principal component analysis model to measure the low-carbon development level of China's power industry. Then, the dynamic change trend and spatial distribution characteristics of the low-carbon development level of China's power industry are analyzed using kernel density estimation and the K-means clustering method. Finally, propensity score matching and difference-in-difference methods are used to analyze the impact of carbon market policies on the low-carbon development level of China's power industry. The results show that, first, the low-carbon development level of China's power industry generally shows an upward trend and a polarized development trend. Second, the low-carbon development level of China's power industry has regional effects and gradient effects. The low-carbon development level of the power industry from high to low is the eastern region, central region and western region. Third, carbon market policies can help improve the low-carbon development level of China's power industry. The research results provide some reference and guidance for the evaluation of the low-carbon development level of China's power industry and the improvement of carbon market policies.

14.
Stem Cell Reports ; 18(2): 463-474, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36638791

RESUMEN

A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.


Asunto(s)
Células Madre Embrionarias de Ratones , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Transcriptoma , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Cromatina/metabolismo
15.
Biochem Biophys Res Commun ; 642: 57-65, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36565564

RESUMEN

Multiple sclerosis (MS) is a common autoimmunity disease of the central nervous system (CNS) that mostly happens in young adults. The chronic clinical features of MS include inflammatory demyelination, infiltration of immune cells, and secretion of inflammatory cytokines, which have been proved to be associated with CD4+ T cells. Ferroptosis is a newly discovered programmed cell death mediated by the massive lipid peroxidation and more sensitive to CD4+ T cells. However, the effect of ferroptosis of CD4+ T cells on the occurrence and progression of MS retains unclear. Here, the experimental autoimmune encephalomyelitis (EAE) model was used to investigate the role of GPX4, a leading inhibitor of ferroptosis, which plays in the function of CD4+ T cells. Our results showed that GPX4 was highly expressed in CD4+ T cells of MS patients based on existing databases. Strikingly, conditional knockout of GPX4 in CD4cre mice (cKO mice) significantly alleviated the average symptom scores and immunopathology of EAE. The infiltration of immune cells, including CD4+ T and CD8+ T cells, and the generation of GM-CSF, TNF-α, and IL-17A, were remarkably reduced in the CNS from cKO mice compared with WT mice. These findings further revealed the vital role of GPX4 in the expansion and function of CD4+ T cells. Moreover, GPX4-deficient CD4+ T cells were susceptible to ferroptosis in EAE model. Overall, this study provided novel insights into therapeutic strategies targeting GPX4 in CD4+ T cells for inhibiting CNS inflammation and treating MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Linfocitos T CD8-positivos , Sistema Nervioso Central/metabolismo , Esclerosis Múltiple/patología , Linfocitos T CD4-Positivos , Ratones Endogámicos C57BL
16.
Proc Natl Acad Sci U S A ; 119(51): e2211534119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508653

RESUMEN

Food fortification is an effective strategy to address vitamin A (VitA) deficiency, which is the leading cause of childhood blindness and drastically increases mortality from severe infections. However, VitA food fortification remains challenging due to significant degradation during storage and cooking. We utilized an FDA-approved, thermostable, and pH-responsive basic methacrylate copolymer (BMC) to encapsulate and stabilize VitA in microparticles (MPs). Encapsulation of VitA in VitA-BMC MPs greatly improved stability during simulated cooking conditions and long-term storage. VitA absorption was nine times greater from cooked MPs than from cooked free VitA in rats. In a randomized controlled cross-over study in healthy premenopausal women, VitA was readily released from MPs after consumption and had a similar absorption profile to free VitA. This VitA encapsulation technology will enable global food fortification strategies toward eliminating VitA deficiency.


Asunto(s)
Deficiencia de Vitamina A , Vitamina A , Femenino , Ratas , Animales , Alimentos Fortificados , Estudios Cruzados , Culinaria , Micronutrientes
17.
Microb Pathog ; 171: 105735, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007846

RESUMEN

To improve the identification and subsequent intervention of COVID-19 patients at risk for ICU admission, we constructed COVID-19 severity prediction models using logistic regression and artificial neural network (ANN) analysis and compared them with the four existing scoring systems (PSI, CURB-65, SMARTCOP, and MuLBSTA). In this prospective multi-center study, 296 patients with COVID-19 pneumonia were enrolled and split into the General-Ward-Care group (N = 238) and the ICU-Admission group (N = 58). The PSI model (AUC = 0.861) had the best results among the existing four scoring systems, followed by SMARTCOP (AUC = 0.770), motified-MuLBSTA (AUC = 0.761), and CURB-65 (AUC = 0.712). Data from 197 patients (training set) were analyzed for modeling. The beta coefficients from logistic regression were used to develop a severity prediction model and risk score calculator. The final model (NLHA2) included five covariates (consumes alcohol, neutrophil count, lymphocyte count, hemoglobin, and AKP). The NLHA2 model (training: AUC = 0.959; testing: AUC = 0.857) had similar results to the PSI model, but with fewer variable items. ANN analysis was used to build another complex model, which had higher accuracy (training: AUC = 1.000; testing: AUC = 0.907). Discrimination and calibration were further verified through bootstrapping (2000 replicates), Hosmer-Lemeshow goodness of fit testing, and Brier score calculation. In conclusion, the PSI model is the best existing system for predicting ICU admission among COVID-19 patients, while two newly-designed models (NLHA2 and ANN) performed better than PSI, and will provide a new approach for the development of prognostic evaluation system in a novel respiratory viral epidemic.


Asunto(s)
COVID-19 , Infecciones Comunitarias Adquiridas , COVID-19/diagnóstico , Infecciones Comunitarias Adquiridas/epidemiología , Humanos , Redes Neurales de la Computación , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos
18.
Nucleic Acids Res ; 50(13): 7326-7349, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35776115

RESUMEN

SETDB1 is a key regulator of lineage-specific genes and endogenous retroviral elements (ERVs) through its deposition of repressive H3K9me3 mark. Apart from its H3K9me3 regulatory role, SETDB1 has seldom been studied in terms of its other potential regulatory roles. To investigate this, a genomic survey of SETDB1 binding in mouse embryonic stem cells across multiple libraries was conducted, leading to the unexpected discovery of regions bereft of common repressive histone marks (H3K9me3, H3K27me3). These regions were enriched with the CTCF motif that is often associated with the topological regulator Cohesin. Further profiling of these non-H3K9me3 regions led to the discovery of a cluster of non-repeat loci that were co-bound by SETDB1 and Cohesin. These regions, which we named DiSCs (domains involving SETDB1 and Cohesin) were seen to be proximal to the gene promoters involved in embryonic stem cell pluripotency and lineage development. Importantly, it was found that SETDB1-Cohesin co-regulate target gene expression and genome topology at these DiSCs. Depletion of SETDB1 led to localized dysregulation of Cohesin binding thereby locally disrupting topological structures. Dysregulated gene expression trends revealed the importance of this cluster in ES cell maintenance as well as at gene 'islands' that drive differentiation to other lineages. The 'unearthing' of the DiSCs thus unravels a unique topological and transcriptional axis of control regulated chiefly by SETDB1.


Asunto(s)
Retrovirus Endógenos , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Retrovirus Endógenos/metabolismo , Genómica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Ratones , Cohesinas
19.
Ecotoxicol Environ Saf ; 241: 113810, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35777340

RESUMEN

Particulate matter (PM) exposure is identified as a critical risk factor for chronic airway diseases, but the biological mechanism of PM-induced lung damage was not fully elucidated. The m6A methylation, as the main member of epigenetic modifications, has been found to play an important role in different pulmonary diseases, but its regulatory effect on PM-induced lung damage remains unknown. This study firstly used the methylated RNA immunoprecipitation sequencing (MeRIP-seq) to reveal the m6A methylome profiles in the lung tissues of mice with acute PM exposure. Compared with the normal control, a total of 2210 differentially hypermethylated m6A peaks within 1879 genes and 1278 differentially hypomethylated m6A peaks within 1153 genes were identified in the PM-exposed group. Conjoint analysis of MeRIP-seq and high-throughput sequencing for RNA (RNA-seq) data predicated several potential pathways including MAPK signaling pathway, cell senescence, and cell cycle. Four m6A-modified differentially expressed genes (IL-1a, IL-1b, ADAM-8, and HMOX-1) were selected for validation using MeRIP-qPCR. Furthermore, the m6A-modified IL-1a promoted PM-induced inflammation via regulating MAPK signaling pathway. These results provide a new insight into the biological mechanism of PM-induced lung damage, and help us to develop new methods to prevent and treat PM-induced adverse health effects.


Asunto(s)
Epigenoma , Material Particulado , Animales , Pulmón , Ratones , Material Particulado/metabolismo , ARN/genética , Transcriptoma
20.
Front Genet ; 13: 795844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734424

RESUMEN

Glioma is the most common malignancy of the nervous system with high mortality rates. The MS4A family members have been reported as potential prognostic biomarkers in several cancers; however, the relationship between the MS4A family and glioma has not been clearly confirmed. In our study, we explored the prognostic value of MS4As as well as their potential pro-cancer mechanisms of glioma. Using bioinformatics analysis methods based on the data from public databases, we found that the expression of MS4A4A, MS4A4E, MS4A6A, MS4A7, TMEM176A, and TMEM176B was significantly overexpressed in glioma tissues compared with that of normal tissues. The Kaplan-Meier method and Cox proportional hazards models revealed that high levels of MS4As can be associated with a poorer prognosis; TMEM176A, TMEM176B, age, WHO grade, and IDH status were identified as independent prognostic factors. Enrichment analysis predicted that MS4As were related to tumor-related pathways and immune response, which might regulate the process of MS4As promoting tumorigenesis. Additionally, we analyzed the correlations of MS4A expression with immune cells and immune inhibitory molecules. Finally, data from the cell culture suggested that knockdown of the TMEM176B gene contributes to the decreased proliferation and migration of glioma cells. In conclusion, MS4A4A, MS4A4E, MS4A6A, MS4A7, TMEM176A, and TMEM176B may act as potential diagnostic or prognostic biomarkers in glioma and play a role in forming the immune microenvironment in gliomas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...