Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(4): 4863-4872, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38237116

RESUMEN

A butterfly-shaped phenothiazine derivative, PTTCN, was synthesized to obtain pure organic porous crystals for the highly efficient absorptive separation of toluene (Tol) and methylcyclohexane (Mcy). Due to the presence of three polar cyano groups and nonplanar conformation, these molecules self-assembled into a hydrogen-bonded organic framework (X-HOF-5) with distinct cavities capable of accommodating Tol molecules through multiple hydrogen-bonding interactions. Upon solvent removal via heating, the activated X-HOF-5 retained its cavity structure albeit with altered stacking arrangements, accompanied by a remarkable fluorescent color change from cyan to green. X-HOF-5a can undergo a phase transformation into X-HOF-5 upon reabsorption of Tol, while exhibiting no accommodation of Mcy due to the weak intermolecular interaction between PTTCN and Mcy. This suggests that the activated HOF material prefers Tol over Mcy. Moreover, X-HOF-5a may selectively accommodate Tol in a Tol/Mcy equimolar mixture, and the purity of Tol can reach 97% after release from the framework. Additionally, it is noteworthy that the HOF material exhibits recyclability without any discernible loss in performance.

2.
ACS Appl Mater Interfaces ; 13(27): 32270-32277, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34197080

RESUMEN

Guest molecules may endow porous materials with new or enhanced properties as well as functions. Here, a porous hydrogen-bonded organic framework (HOF) constructed from a three-armed triphenylamine derivative is used to investigate how guests regulate photoluminescence and trigger force-stimuli response. It was found that guest solvents in pores might regulate HOF's luminescence. Interestingly, acetic acid as a guest endowed HOF materials with longer emission wavelengths and triggered the responses to mechanical force stimuli. Under shear force, an obvious blueshift in emission spectra was observed because of the loss of free guests and the conversion of π-stacking model. Further blue-shifted emission appeared while the bound guests were completely removed by heating. Mechanofluorochromic HOF materials could be regenerated through recrystallization and adsorbing guest. Conversely, HOFs with other guests and activated HOFs only resulted in a slight change in their fluorescence behaviors after force stimuli.

3.
Chem Commun (Camb) ; 57(45): 5558-5561, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-33969842

RESUMEN

Two 2-dimensional covalent organic frameworks (COFs; TJNU-203 and TJNU-204) with high crystallinity and large specific surface area are rationally fabricated using a three-connected distorted building block and linear linkers. The two COFs show high iodine uptake (5.885 g g-1 for TJNU-203 and 5.335 g g-1 for TJNU-204) on account of physical-chemical adsorption, which make them one among the best porous materials for iodine adsorption.

4.
J Am Chem Soc ; 142(10): 4862-4871, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32073853

RESUMEN

Covalent organic frameworks (COFs) are excellent platforms with tailored functionalities in photocatalysis. There are still challenges in increasing the photochemical performance of COFs. Therefore, we designed and prepared a series of COFs for photocatalytic hydrogen generation. Varying different ratios of ß-ketoenamine to imine moieties in the linkages could differ the ordered structure, visible light harvesting, and bandgap. Overall, ß-ketoenamine-linked COFs exhibited much better photocatalytic activity than those COFs having both ß-ketoenamine and imine moieties on account of a nonquenched excited state and more favorable HOMO level in the photoinduced oxidation reaction from the former. Specifically, after in situ growth of ß-ketoenamine-linked COFs onto NH2-Ti3C2Tx MXene via covalent connection, the heterohybrid showed an obvious improvement in photocatalytic H2 evolution because of strong covalent coupling, electrical conductivity, and efficient charge transfer. This integrated linkage evolution and covalent hybridization approach advances the development of COF-based photocatalysts.

5.
J Phys Chem Lett ; 11(4): 1490-1496, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32023059

RESUMEN

Deep understanding and fine tailoring of spontaneous structural evolution of self-assembled arrays are pivotal in the rational design of advanced soft materials. However, an indistinct structure-property relationship and pathway complexity in self-assembly lead to a considerable challenge. Herein, we reveal the self-assembly pathway complexity in spontaneous aggregation of several N-terminated aromatic amino acids. By primarily tuning the incubation time, building blocks appended with alanine and serine selectively form 1:1 hydrated clathrates, enabling the microfiber to transition to crystals. The dynamic water intercalation process was studied by incubation time-dependent morphological changes, powder X-ray diffraction, and single-crystal structure analysis. A pronounced amino acid residue effect on the self-assembly evolution was reflected by supramolecular chirality inversion of the building block having the phenylalanine residue, accomplishing dynamic M- to P-helicity transition within a confined time scale.

6.
Angew Chem Int Ed Engl ; 58(49): 17679-17683, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31583814

RESUMEN

Covalent-organic frameworks (COFs) as porous crystalline materials show promising potential applications. However, developing facile strategies for the construction of COFs directly from amorphous covalent organic polymers (COPs) is still a great challenge. To this end, we report a novel approach for easy preparation of COFs from amorphous COPs through the linkage replacement under different types of reactions. Four COFs with high crystallinity and porosity were constructed via the linkage substitution of polyimide-linked COPs to imine-linked COFs as well as imine-linked COPs to polyimide-linked COFs. The realization of the linkage substitution would significantly expand the research scope of COFs.

7.
Chemistry ; 25(31): 7426-7437, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-30791175

RESUMEN

Supramolecular self-assembly stands for the spontaneous aggregation of small organic compounds or polymers into ordered structures at any scale. When being induced by inherent molecular chiral centers or ambient asymmetric factors, asymmetric spatial arrangement between building units shall occur, which is defined as supramolecular chirality. Except for molecular design, utilizing external stimulus factors to tune supramolecular chirality is a promising approach. In this Concept article, we particularly discuss the important role of solvents in manipulating the chirality of self-assembled systems. The impact of solvents on the chirality is generally based on three properties of solvents, i.e., chirality, polarity, and active coassembly with building blocks. Molecular self-assembly in chiral solvents could undergo the chirality transfer, exhibiting a chiral induction effect. Solvent polarity often determines intermolecular orientation. As a consequence, those building blocks with both polar and apolar segments might change their chirality depending on the solvent polarity. We elaborate the active participation of solvent molecules into ordered structures together with building blocks, where solvents and building blocks exhibit a coassembly manner. By specific treatments such as heating and cooling, solvents could be released or re-entrapped, allowing a smart control over supramolecular chirality. The solvent effect in manipulating two-dimensional chiral self-assemblies is then discussed. The perspective and future development in this research field are presented at last.

8.
Angew Chem Int Ed Engl ; 58(15): 4906-4910, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30758117

RESUMEN

The field of covalent organic frameworks (COFs) has been developed significantly in the past decade on account of their important characteristics and vast application potential. On the other hand, the discovery of novel synthetic methodology is still a challenging task to further promote the preparation of COFs. Herein, an interesting protocol for the conversion of amorphous nonporous covalent organic polymers (COPs) to COFs was established, affording four COFs with high crystallinity and porosity. Specifically, imine-linked amorphous COP-1 was successfully converted to COF-1-4 by replacing one type of linker with other organic building blocks. The realization of this conversion provides a facile method for constructing COFs from COPs.

9.
ChemSusChem ; 11(21): 3751-3757, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30129103

RESUMEN

Three Co-based isostructural MOF-74-III materials with expanded pores are synthesized, with varied extent of fused benzene rings onto sidechain of same-length ligands to finely tune the pore sizes to 2.6, 2.4, and 2.2 nm. Gas sorption results for these highly mesoporous materials show that alternately arranged fused benzene rings on one side of the ligand could serve as extra anchoring sites for CO2 molecules with π-π interactions, conspicuously enhancing CO2 uptake and CO2 /CH4 and CO2 /N2 selectivity; while more steric hindrance effect towards open CoII sites were imposed by ligands flanked with fused benzene rings on both sides, compromising such extra-sites enhancement. In the catalytic conversion of CO2 with propylene oxide to form propylene carbonate, the as-synthesized MOF-74-III(Co) with desired properties of highly exposed and accessible open CoII centers, large mesopore apertures and multi-interactive sites, demonstrated higher catalytic activity compared with other two MOFs, with benzene rings fused to ligands hampering the functionality of CoII centers as Lewis acid sites. Our results highlight the viability of finely tuning the expanded pores of MOF-74 isostructure and the effect of fused benzene rings as functional groups onto selective CO2 capture and conversion.

10.
Chemistry ; 23(71): 17879-17884, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29119606

RESUMEN

The attractive properties of layered inorganic materials, which make them suitable for numerous applications in chemical industries and life sciences, originated from their crystalline framework structures. Here, we report a new layered germanate PKU-21, which was prepared by the hydrothermal synthesis method using 2-propanolamine (MIPA) as the structure-directing agent. The structure of PKU-21 was determined from synchrotron single-crystal X-ray diffraction and synchrotron powder X-ray diffraction data. It reveals a complicated framework structure containing 18 unique Ge atoms in the asymmetric unit. PKU-21 is the first layered germanate built from both Ge7 and Ge10 clusters, following the 3-dimensional germanate PKU-17. The preparation and structure of PKU-21 are discussed in comparison with PKU-17, which provides new insight into the formation mechanism of germanates. Gas sorption experiments indicate that the layered PKU-21 sample exhibits a better CO2 sorption selectivity over N2 and CH4 at 298 K than at 273 K, making it a promising candidate for CO2 separation.

11.
Small ; 12(28): 3849-60, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27283881

RESUMEN

A one-step multipurpose strategy is developed to realize a sophisticated design that simultaneously integrates three desirable components of nitrogen dopant, 3D graphene, and 1D mesoporous metal oxide nanowires into one hybrid material. This facile synthetic strategy includes a one-step hydrothermal reaction followed by topotactic calcination. The utilization of urea as the starting reagent enables the precipitation of precursor nanowires and concurrent doping of nitrogen heteroatoms on graphene during hydrothermal reaction, while at the same time the graphene nanosheets are self-assembled to afford a 3D scaffold. Detailed characterizations on the final calcined product are conducted to confirm the phase purity, porosity, nitrogen composition, and morphology. The integration of two building blocks, i.e., flexible graphene nanosheets and Co3 O4 nanowires, enables various intertwining behaviors such as seaming, bridging, hooping, bundling, and sandwiching, of which synergistic effect substantially enhances electrical and electrochemical properties of the resultant hybrid. For lithium ion battery application of the hybrid, a remarkably high capacity more than 1200 mA h g(-1) (at 100 mA g(-1) ) is stabilized over 100 cycles with coulombic efficiency higher than 97%. Even during rapid discharge/charge processes (1000 mA g(-1) ), a reversible charge capacity of 812 mA h g(-1) is still retained after 230 cycles.

12.
Adv Mater ; 28(15): 2855-73, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26924720

RESUMEN

As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.

13.
Nano Lett ; 16(4): 2860-6, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26998896

RESUMEN

Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots' structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals.


Asunto(s)
Grafito/química , Dispositivos Laboratorio en un Chip , Metales Pesados/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
14.
Small ; 12(17): 2334-43, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26900671

RESUMEN

A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs.

15.
Chemistry ; 21(47): 16818-22, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26450522

RESUMEN

Covalent organic frameworks (COFs) are periodic two- or three-dimensional polymeric networks with high surface areas, low density, and designed structures. Because COFs are normally prepared based on reversible formation of covalent bonds with relatively weak stability, their structures can be easily broken or damaged due to changes in the surrounding environment. Thus, developing strategies to realize the reconstruction of COFs in order to extend their usage lifetime is crucial for practical applications. In addition, exploring the kinetics of COF growth under varied reaction conditions is important for better understanding the nucleation and growth processes of COFs. In this work, the reformation mechanism of an imine-based COF using an ex situ characterization method was investigated, disclosing an interesting COF reconstruction progress from disorder to order. The present study shows the regeneration ability of COFs, and the developed method could be generalized for broader use in the field.

16.
Small ; 11(38): 5023-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26192264

RESUMEN

Surface-conductive Janus spherical motors are fabricated by wrapping silica particles with reduced graphene oxide capped with a thin Pt layer. These motors exhibit a 100% enhanced velocity as compared to standard SiO2 -Pt motors. Furthermore, the versatility of graphene may open up possibilities for a diverse range of applications from active drug delivery systems to water remediation.


Asunto(s)
Grafito/química , Movimiento (Física) , Nanopartículas/química , Peróxido de Hidrógeno/química , Nanopartículas/ultraestructura , Óxidos/química , Platino (Metal)/química , Dióxido de Silicio/química , Propiedades de Superficie
17.
J Am Chem Soc ; 137(3): 1020-3, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25581488

RESUMEN

Covalent organic frameworks (COFs) are excellent candidates for various applications. So far, successful methods for the constructions of COFs have been limited to a few condensation reactions based on only one type of covalent bond formation. Thus, the exploration of a new judicious synthetic strategy is a crucial and emergent task for the development of this promising class of porous materials. Here, we report a new orthogonal reaction strategy to construct COFs by reversible formations of two types of covalent bonds. The obtained COFs consisting of multiple components show high surface area and high H2 adsorption capacity. The strategy is a general protocol applicable to construct not only binary COFs but also more complicated systems in which employing regular synthetic methods did not work.

18.
Biomaterials ; 35(27): 7951-62, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24930850

RESUMEN

In this study, a type of intracellular redox-triggered hollow mesoporous silica nanoreservoirs (HMSNs) with tumor specificity was developed in order to deliver anticancer drug (i.e., doxorubicin (DOX)) to the target tumor cells with high therapeutic efficiency and reduced side effects. Firstly, adamantanamine was grafted onto the orifices of HMSNs using a redox-cleavable disulfide bond as an intermediate linker. Subsequently, a synthetic functional molecule, lactobionic acid-grafted-ß-cyclodextrin (ß-CD-LA), was immobilized on the surface of HMSNs through specific complexation with the adamantyl group, where ß-CD served as an end-capper to keep the loaded drug within HMSNs. ß-CD-LA on HMSNs could also act as a targeting agent towards tumor cells (i.e., HepG2 cells), since the lactose group in ß-CD-LA is a specific ligand binding with the asialoglycoprotein receptor (ASGP-R) on HepG2 cells. In vitro studies demonstrated that DOX-loaded nanoreservoirs could be selectively endocytosed by HepG2 cells, releasing therapeutic DOX into cytoplasm and efficiently inducing the apoptosis and cell death. In vivo investigations further confirmed that DOX-loaded nanoreservoirs could permeate into the tumor sites and actively interact with tumor cells, which inhibited the tumor growth with the minimized side effect. On the whole, this drug delivery system exhibits a great potential as an efficient carrier for targeted tumor therapy in vitro and in vivo.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Espacio Intracelular/metabolismo , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Dióxido de Silicio/química , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Disacáridos/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Endocitosis/efectos de los fármacos , Células Hep G2 , Humanos , Espacio Intracelular/efectos de los fármacos , Ratones Desnudos , Nanopartículas/ultraestructura , Oxidación-Reducción/efectos de los fármacos , Porosidad , Soluciones , beta-Ciclodextrinas/química
19.
Chemistry ; 20(14): 4032-7, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24596327

RESUMEN

Developing gold nanoparticles (AuNPs) with well-designed functionality is highly desirable for boosting the performance and versatility of inorganic-organic hybrid materials. In an attempt to achieve ion recognition with specific signal expressions, we present here 4-piperazinyl-1,8-naphthalimide-functionalized AuNPs for the realization of quantitative recognition of Fe(III) ions with dual (colorimetric and fluorescent) output. The research takes advantage of 1) quantity-controlled chelation-mode transformation of the piperazinyl moiety on the AuNPs towards Fe(III), thereby resulting in an aggregation-dispersion conversion of the AuNPs in solution, and 2) photoinduced electron transfer of a naphthaimide fluorophore on the AuNPs, thus leading to reversible absorption and emission changes. The functional AuNPs are also responsive to pH variations. This strategy for realizing the aggregation-dispersion conversion of AuNPs with returnable signal output might exhibit application potential for advanced nanoscale chemosensors.


Asunto(s)
Oro/química , Hierro/química , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie
20.
Chempluschem ; 79(3): 462-469, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31986614

RESUMEN

This study provides a successful preparation of biocompatible hybrid materials (1-GO and 2-GO) by the integration of graphene oxide (GO) with water-soluble pillararenes (bolaamphiphile 1 and tadpolelike amphiphile 2) for dual-mode Raman and fluorescence bioimaging in vitro. The investigations show that pillararenes 1 and 2 were loaded onto the surface of GO through strong hydrogen-bonding interactions. Aqueous suspensions of 1-GO and 2-GO are stable and can be kept for a long time. After confirming their good biocompatibility by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the 1-GO and 2-GO hybrids were endocytosed by HeLa cells for in vitro Raman imaging. It was found that 1-GO presents better Raman imaging than 2-GO. When a fluorescent guest molecule, bipyridinium derivative 3, was added into the suspensions of the hybrids, the suspensions of 1-GO and 2-GO were as stable as the original. The suspensions of the inclusion complexes (1-GO⋅3 and 2-GO⋅3) formed from 1-GO and 2-GO with 3 can also be endocytosed by HeLa cells to enable in vitro fluorescence imaging to be performed. It was found that 1-GO⋅3 performs better than 2-GO⋅3. The current research has determined the capacities of pillararene-modified GO for combined bioimaging, which paves the way for using these biocompatible materials towards dual-mode diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA