Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Ophthalmol ; 16(4): 483-498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077494

RESUMEN

AIM: To explore whether the subretinal transplantation of retinal progenitor cells from human embryonic stem cell-derived retinal organoid (hERO-RPCs) could promote Müller glia dedifferentiation and transdifferentiation, thus improving visual function and delaying retinal degenerative progression. METHODS: hERO-RPCs were subretinally transplanted into Royal College of Surgeons (RCS) rats. Electroretinography (ERG) recording was performed at 4 and 8wk postoperation to assess retinal function. Using immunofluorescence, the changes in outer nuclear layer (ONL) thickness and retinal Müller glia were explored at 2, 4, and 8wk postoperation. To verify the effect of hERO-RPCs on Müller glia in vitro, we cocultured hERO-RPCs with Müller glia with a Transwell system. After coculture, Ki67 staining and quantitative polymerase chain reaction (qPCR) were performed to measure the proliferation and mRNA levels of Müller glia respectively. Cell migration experiment was used to detect the effect of hERO-RPCs on Müller glial migration. Comparisons between two groups were performed by the unpaired Student's t-test, and comparisons among multiple groups were made with one-way ANOVA followed by Tukey's multiple comparison test. RESULTS: The visual function and ONL thickness of RCS rats were significantly improved by transplantation of hERO-RPCs at 4 and 8wk postoperation. In addition to inhibiting gliosis at 4 and 8wk postoperation, hERO-RPCs significantly increased the expression of dedifferentiation-associated transcriptional factor in Müller glia and promoted the migration at 2, 4 and 8wk postoperation, but not the transdifferentiation of these cells in RCS rats. In vitro, using the Transwell system, we found that hERO-RPCs promoted the proliferation and migration of primary rat Müller glia and induced their dedifferentiation at the mRNA level. CONCLUSION: These results show that hERO-RPCs might promote early dedifferentiation of Müller glia, which may provide novel insights into the mechanisms of stem cell therapy and Müller glial reprogramming, contributing to the development of novel therapies for retinal degeneration disorders.

2.
Stem Cell Reports ; 16(7): 1805-1817, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34214489

RESUMEN

Stem cell transplantation shows enormous potential for treatment of incurable retinal degeneration (RD). To determine if and how grafts connect with the neural circuits of the advanced degenerative retina (ADR) and improve vision, we perform calcium imaging of GCaMP5-positive grafts in retinal slices. The organoid-derived C-Kit+/SSEA1- (C-Kit+) retinal progenitor cells (RPCs) become synaptically organized and build spontaneously active synaptic networks in three major layers of ADR. Light stimulation of the host photoreceptors elicits distinct neuronal responses throughout the graft RPCs. The graft RPCs and their differentiated offspring cells in inner nuclear layer synchronize their activities with the host cells and exhibit presynaptic calcium flux patterns that resemble intact retinal neurons. Once graft-to-host network is established, progressive vision loss is stabilized while control eyes continually lose vision. Therefore, transplantation of organoid-derived C-Kit+ RPCs can form functional synaptic networks within ADR and it holds promising avenue for advanced RD treatment.


Asunto(s)
Retina/patología , Degeneración Retiniana/fisiopatología , Degeneración Retiniana/terapia , Trasplante de Células Madre , Sinapsis/patología , Visión Ocular , Animales , Diferenciación Celular , Movimiento Celular , Antígeno Lewis X , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Organoides/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo
3.
Exp Eye Res ; 202: 108305, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080300

RESUMEN

The biosafety and efficiency of transplanting retinal pigment epithelial (RPE) cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been evaluated in phase I and phase II clinical trials. For further large-scale application, cryopreserved RPE cells must be used; thus, it is highly important to investigate the influence of cryopreservation and thawing on the biological characteristics of hESC-RPE cells and their post-transplantation vision-restoring function. Here, via immunofluorescence, qPCR, transmission electron microscopy, transepithelial electrical resistance, and enzyme-linked immunosorbent assays (ELISAs), we showed that cryopreserved hESC-RPE cells retained the specific gene expression profile, morphology, ultrastructure, and maturity-related functions of induced RPE cells. Additionally, cryopreserved hESC-RPE cells exhibited a polarized monolayer, tight junction, and gap junction structure and an in vitro nanoparticle phagocytosis capability similar to those of induced hESC-RPE cells. However, the level of pigment epithelium-derived factor (PEDF) secretion was significantly decreased in cryopreserved hESC-RPE cells. Royal College of Surgeons rats with cryopreserved hESC-RPE cells engrafted into the subretinal space exhibited a significant decrease in the b-wave amplitude compared with rats engrafted with induced hESC-RPE cells at 4 weeks post transplantation. However, the difference disappeared at 8 weeks and 12 weeks post operation. No significant difference in the outer nuclear layer (ONL) thickness was observed between the two groups. Our data showed that even after cryopreservation and thawing, cryopreserved hESC-RPE cells are still qualified as a donor cell source for cell-based therapy of retinal degenerative diseases.


Asunto(s)
Células Madre Embrionarias Humanas/fisiología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/fisiología , Trasplante de Células Madre , Línea Celular , Polaridad Celular , Células Cultivadas , Criopreservación , Impedancia Eléctrica , Células Madre Embrionarias Humanas/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/ultraestructura
4.
Curr Eye Res ; 37(8): 749-58, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22691022

RESUMEN

PURPOSE OF THE STUDY: Retinitis pigmentosa (RP) is a group of genetic disorders and a slow loss of vision that is caused by a cascade of retinal degenerative events. We examined whether these retinal degenerative events were reduced after cultured mixtures of adult olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts (ONFs) were transplanted into the subretinal space of 1-month-old RCS rat, a classic model of RP. MATERIALS AND METHODS: The changes in retinal photoreceptors and Müller cells of RCS rats after cell transplantation were observed by the expression of recoverin and glial fibrillary acidic protein (GFAP), counting peanut agglutinin (PNA)-positive cone outer segments and calculating the relative apoptotic area. The retinal function was also evaluated by Flash electroretinography (ERG). To further investigate the mechanisms, by which OECs/ONFs play important roles in the transplanted retinas, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) secretion of the cultured cells were analyzed by ELISA. The ability of OECs/ONFs to ingest porcine retinal outer segments and the amount of phagocytosis were compared with retinal pigment epithelium (RPE) cells. RESULTS: Our research showed that the transplantation of OECs/ONFs mixtures restored recoverin expression, protected retinal outer segments, increased PNA-positive cone outer segments, reduced caspase-positive apoptotic figures, downregulated GFAP, and maintained the b-wave of the ERG. Cultured OECs/ONFs expressed and secreted NGF, BDNF, and bFGF which made contributions to assist survival of the photoreceptors. An in vitro phagocytosis assay showed that OECs, but not ONFs, phagocytosed porcine retinal outer segments, and the phagocytic ability of OECs was even superior to that of RPE cells. CONCLUSIONS: These findings demonstrate that transplantation of OECs/ONFs cleaned up the accumulated debris in subretinal space, and provided an intrinsic continuous supply of neurotrophic factors. It suggested that transplantation of OECs/ONFs might be a possible future route for protection of the retina and reducing retinal degeneration in RP.


Asunto(s)
Modelos Animales de Enfermedad , Fibroblastos/trasplante , Células-Madre Neurales/trasplante , Bulbo Olfatorio/citología , Retinitis Pigmentosa/cirugía , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular , Trasplante de Células , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Proteína Ácida Fibrilar de la Glía/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Nervio Olfatorio/citología , Fagocitosis/fisiología , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Ratas , Ratas Mutantes , Recoverina/metabolismo , Retina/fisiología , Neuronas Retinianas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatología , Porcinos , Transfección
5.
Zhonghua Yan Ke Za Zhi ; 47(3): 210-6, 2011 Mar.
Artículo en Chino | MEDLINE | ID: mdl-21609621

RESUMEN

OBJECTIVE: To study the influence of the ectopic synapse for electrophysiological characteristics modification in ON retinal bipolar cells (ON-RBCs) of RCS rat. METHODS: Immunofluorescence of the retinal frozen section was taken in P60 d, P90 d of RCS rat (RCS) and control rat (CTR) with the anti-mGluR6 and anti-Synaptophysin, Lucifer Yellow staining solo ON-RBCs was taken in all the group. The whole cell recording was performed in the retinal slice of P60 d, P90 d in RCS and CTR. The modification of the passive membrane properties and the outward currents properties in RCS-ON-RBCs, CTR-ON-RBCs and CTR-OFF-RBCs were observed. RESULTS: RCS-ON-RBCs stretched out the ectopic neurite in different direction and the activity of synapse could be detected around the ectopic neurite. From Pn60d, passive membrane properties of RCS-ON-RBCs kept immature, The RMP in RCS-ON-RBCs and CTR-ON-RBCs were (-61.8 ± 3.07), (-50.44 ± 1.36) mV and (-63.1 ± 2.59), (-48.37 ± 3.69) mV when P60 d and P90 d, there ware significantly higher than CTR group (t = 2.191, 2.435, 5.817, 6.912;P < 0.05). The IR in RCS-ON-RBCs and CTR-ON-RBCs were (323.3 ± 42.6), (337.6 ± 71.3) MΩ and (321.2 ± 58.6), (340.3 ± 62.8) MΩ when P60 d and P90 d, there ware significantly higher than CTR group (t = 3.561, 1.987, 5.211, 4.034; P < 0.05). Outward currents were recorded when giving hyper- and depolarized voltage steps. In retinal degeneration, the amplitude of outward currents in RCS-ON-RBCs is significantly different with CTR-ON-RBCs (t = 5.561, 6.341; P < 0.05) or CTR-OFF-RBCs (t = 5.357, 6.997; P < 0.05). CONCLUSION: The ectopic neurite from RCS-ON-RBCs has the possibility for translating the signal. In retinitis pigmentosa, the modification of electrophysiology characteristics in RCS-ON-RBCs was significantly different with CTR-ON-RBCs and CTR-OFF-RBCs. Influence with the ectopic neurite is the possible cause.


Asunto(s)
Células Bipolares de la Retina/metabolismo , Retinitis Pigmentosa/metabolismo , Sinapsis/metabolismo , Potenciales Sinápticos , Animales , Técnicas In Vitro , Ratas , Células Bipolares de la Retina/fisiología , Retinitis Pigmentosa/patología
6.
Curr Eye Res ; 35(11): 1002-11, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20958189

RESUMEN

PURPOSE: In retinitis pigmentosa (RP), the slow and progressive death of inner retinal neurons is thought to be inevitable after the death of photoreceptors. However, even in the advanced stage of RP, all inner retinal neurons are not completely lost. The morphological and electrophysiological modifications in ON-retinal bipolar cells (ON-RBCs) of Royal College of Surgeons (RCS) rats (RCS-ON-RBCs) were investigated to elucidate the mechanisms of survival of RCS-ON-RBCs in RP. METHODS: Control (CTR) and RCS rats were divided into age groups according to postnatal stage: postnatal day 21 (Pn21d), postnatal day 30 (Pn30d), postnatal day 60 (Pn60d), and postnatal day 90 (Pn90d). Lucifer yellow staining of single ON-RBCs and double-immunofluorescence of the retinal frozen sections were used to detect the morphological modifications and loss of RCS-ON-RBCs in different retinal regions. The whole-cell patch clamping technique was used to record the electrophysiological properties of ON-RBCs. RESULTS: There was a significant loss of RCS-ON-RBCs compared with CTR (p < 0.01) at Pn60d. Loss of the RCS-ON-RBCs differed by region. From Pn60d onwards, the loss was more severe in the peripheral retinal regions (p < 0.01). From Pn21d, the ectopic neurites from the RCS-ON-RBCs reached the outer and inner nuclear layers. At Pn60d, terminal branches of RCS-ON-RBCs axons vanished and ectopic neurites from the RCS-ON-RBCs became entwined. The resting membrane potential, input resistance and outward membrane current amplitude of RCS-ON-RBCs were significantly higher than those of the ON-RBCs of CTR rats at Pn60d (p < 0.05). CONCLUSION: Our results indicate that more RCS-ON-RBCs survived in the central retinal area near cone clusters, potentially as a result of ectopic neuritis. Meanwhile the surviving RCS-ON-RBCs remained immature and had no normal electrophysiological characteristics.


Asunto(s)
Células Bipolares de la Retina/fisiología , Retinitis Pigmentosa/metabolismo , Animales , Axones/fisiología , Supervivencia Celular/fisiología , Electrofisiología , Técnica del Anticuerpo Fluorescente Indirecta , Potenciales de la Membrana/fisiología , Neuritas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Mutantes , Retinitis Pigmentosa/patología
7.
Mol Vis ; 14: 975-82, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18523654

RESUMEN

PURPOSE: To investigate the distribution, expression, and activity of tissue plasminogen activator (tPA) in the visual cortex of the Long Evans rat during postnatal development, and to explore the relationship between tPA levels and the critical period of visual cortical plasticity. METHODS: Long Evans rats of either sex (n=131) were divided by postnatal age in weeks (PW) into five groups: PW1 (6-8 days, before eye opening, n=19), PW3 (20-22 days, beginning of critical period, n=28), PW5 (34-36 days, later stage of critical period, n=28), PW7 (48-50 days, end of critical period, n=28), and PW14 (95-100 days, adult, n=28). The distribution and expression of tPA was detected using immunofluorescence histochemistry and western blot analysis, respectively. tPA activity in the visual cortex was determined using a chromogenic assay kit. RESULTS: tPA-containing cells were mostly located in visual cortex layer II-III and layer IV during postnatal development. In layer II-III the density of tPA-containing cells reached peak at PW 5, and then reduced to minimum at PW14. In layer IV and V-VI, the density of tPA-containing cells reached a maximum at PW3, and then decreased to the minimum at PW14. Western blot analysis indicated that tPA was detected in visual cortex of rats from PW3 onwards with the highest quantity present at PW5. By comparison, the peak in tPA activity occurred slightly earlier at PW3, and then decreased steadily to lower levels at PW14. CONCLUSIONS: The critical period of visual cortical plasticity, which occurs in early postnatal life, correlates well with tPA expression in the rat visual cortex. This suggests that the expression of tPA is produced in sufficient amounts to balance the increase of chondroitin sulfate proteoglycan expression, at the same time blocking its function, thus allowing synaptic modification to continue. tPA activity may be one of the factors influencing the duration of the critical period and underlying the heterogeneity of synaptic plasticity between visual cortex layer II-III and layer IV.


Asunto(s)
Activador de Tejido Plasminógeno/metabolismo , Corteza Visual/crecimiento & desarrollo , Corteza Visual/metabolismo , Animales , Animales Recién Nacidos , Bioensayo , Western Blotting , Recuento de Células , Inmunohistoquímica , Procesamiento Proteico-Postraduccional , Ratas , Ratas Long-Evans , Corteza Visual/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...