Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727381

RESUMEN

Broad-area lasers (BALs) have found applications in a variety of crucial fields on account of their high output power and high energy transfer efficiency. However, they suffer from poor spatial beam quality due to multi-mode behavior along the waveguide transverse direction. In this paper, we propose a novel metasurface waveguide structure acting as a transverse mode selective back-reflector for BALs. In order to effectively inverse design such a structure, a digital adjoint algorithm is introduced to adapt the considerably large design area and the high degree of freedom. As a proof of the concept, a device structure with a design area of 40 × 20 µm2 is investigated. The simulation results exhibit high fundamental mode reflection (above 90%), while higher-order transverse mode reflections are suppressed below 0.2%. This is, to our knowledge, the largest device structure designed based on the inverse method. We exploited such a device and the method and further investigated the device's robustness and feasibility of the inverse method. The results are elaborately discussed.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38133054

RESUMEN

On-chip optical modulators, which are capable of converting electrical signals into optical signals, constitute the foundational components of photonic devices. Photonics modulators exhibiting high modulation efficiency and low insertion loss are highly sought after in numerous critical applications, such as optical phase steering, optical coherent imaging, and optical computing. This paper introduces a novel accumulation-type vertical modulator structure based on a silicon photonics platform. By incorporating a high-K dielectric layer of ZrO2, we have observed an increase in modulation efficiency while maintaining relatively low levels of modulation loss. Through meticulous study and optimization, the simulation results of the final device structure demonstrate a modulation efficiency of 0.16 V·cm, with a mere efficiency-loss product of 8.24 dB·V.

3.
iScience ; 26(7): 107169, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485348

RESUMEN

We propose a two-stage deep residual attention generative adversarial network (TSDRA-GAN) for inpainting iris textures obscured by eyelids. This two-stage generation approach ensures that the semantic and texture information of the generated images is preserved. In the second stage of the fine network, a modified residual block (MRB) is used to further extract features and mitigate the performance degradation caused by the deepening of the network, thus following the concept of using a residual structure as a component of the encoder. In addition, for the skip connection part of this phase, we propose a dual-attention computing connection (DACC) to computationally fuse the features of the encoder and decoder in both directions to achieve more effective information fusion for iris inpainting tasks. Under completely fair and equal experimental conditions, it is shown that the method presented in this paper can effectively restore original iris images and improve recognition accuracy.

4.
Appl Opt ; 61(9): 2417-2423, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35333261

RESUMEN

In this paper, the wavelength current tuning characteristics of high-temperature-operation single-mode vertical-cavity surface-emitting lasers (VCSELs) for chip-scale atomic sensing systems are studied. Excellent wavelength current tuning robustness is helpful to improve the stability of atomic sensing systems. By optimizing the size of the oxide aperture combined with surface relief mode control technology, the single-mode VCSEL with an 8 µm oxide aperture can achieve 2.02 mW output power at 355 K, and the wavelength current tuning coefficient is ∼0.25nm/mA. This excellent wavelength current tuning robustness results from the low active current density and device heat generation due to the optimized oxide aperture size.

5.
Appl Opt ; 60(21): 6076-6079, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34613271

RESUMEN

In this paper, the influence of the epitaxial structure on distributed Bragg reflector (DBR) grating characteristics is studied by simulation analysis. Comparative analysis shows that the symmetrical epitaxial structure can achieve a lower threshold current and, thus, a higher power. Based on the simulated structure, a DBR laser based on a symmetric epitaxial structure was fabricated, and a single longitudinal mode laser output at ∼1060nm was obtained. The maximum power was 104.5 mW, and the side mode suppression ratio (SMSR) is 43 dB.

6.
Appl Opt ; 59(28): 8789-8792, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33104562

RESUMEN

In this paper, a high-order distributed Bragg reflector (DBR) semiconductor laser operating at 1064 nm is demonstrated based on simulation analysis. To get optimal Bragg grating characteristics, four parameters of the Bragg grating were analyzed in detail. Forty-nine-order Bragg gratings were designed with a reflectivity of 6% and a FWHM of 3 nm, which can realize mode selection while lasing. The Bragg gratings were designed to maximize the use of light. Transmission of the rear laser facet is theoretically 0. This simulation result provides a simple and efficient DBR semiconductor laser scheme without cavity surface coating.

7.
Appl Opt ; 59(29): 9284, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33104644

RESUMEN

This publisher's note amends the author listing in Appl. Opt.59, 8789 (2020)APOPAI0003-693510.1364/AO.402699.

8.
Opt Express ; 28(22): 32612-32619, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114943

RESUMEN

In this paper we reported on the optically pumped VECSELs with switchable lasing wavelengths. The two lasing wavelengths of λ ≈ 954 nm and 1003 nm are generated at different pumping powers from the same gain chip. The thermal rollover of output power is observed twice, and the first rollover on the power curve indicates the switch of lasing wavelength. During the operation of our VECSEL, the increase of pumping power changes the temperature within the gain chip, and thus the gain spectrum is tuned to the one of two modes, which is defined by the dips on the reflectivity spectrum. The maximum output power of each wavelength exceeds 2.2 W at -5 °C. The dual-wavelength emission at λ ≈954 nm and 1003 nm is also demonstrated, and the output power of the dual-wavelength emission reached nearly 2 W.

9.
Materials (Basel) ; 13(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977474

RESUMEN

AlGaInAs quantum well (QW) lasers have great potential in the application fields of optical communications and eye-safety lidars, owing to the advantages of good gain performance. A large amount of experimental evidence indicated that carrier dynamic affects the resonant frequency and modulation response performance of QW lasers. However, the mechanism of carrier dynamic in AlGaInAs QW structure is still ambiguous for complicated artificial multilayers. In this paper, the carrier dynamic of AlGaInAs QW structure was investigated by temperature-dependent time-resolved photoluminescence (TRPL) in the range of 14 to 300 K. Two relaxation times (a fast component and a slow one) have a major impact on the PL emission spectra of the AlGaInAs QW below 200 K. The carriers prefer a fast decay channel in the low temperature regime, whereas the slow one a higher temperature. An unconventional temperature dependence of carrier relaxation is observed in both decay processes. The carriers' lifetime decreases with the temperature increasing till 45 K and then increases with temperature up to 250 K. It is quite different from that in the bulk semiconductor. The mechanism of temperature-dependent carrier relaxation at temperatures above 45 K is a combination of dark state occupation and a nonradiative recombination process.

10.
Materials (Basel) ; 11(6)2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925827

RESUMEN

An aluminum gallium indium arsenic (AlGaInAs) material system is indispensable as the active layer of diode lasers emitting at 1310 or 1550 nm, which are used in optical fiber communications. However, the course of the high-temperature instability of a quantum well structure, which is closely related to the diffusion of indium atoms, is still not clear due to the system’s complexity. The diffusion process of indium atoms was simulated by thermal treatment, and the changes in the optical and structural properties of an AlGaInAs quantum well are investigated in this paper. Compressive strained Al0.07Ga0.22In0.71As quantum wells were treated at 170 °C with different heat durations. A significant decrement of photoluminescence decay time was observed on the quantum well of a sample that was annealed after 4 h. The microscopic cathodoluminescent (CL) spectra of these quantum wells were measured by scanning electron microscope-cathodoluminescence (SEM-CL). The thermal treatment effect on quantum wells was characterized via CL emission peak wavelength and energy density distribution, which were obtained by spatially resolved cathodoluminescence. The defect area was clearly observed in the Al0.07Ga0.22In0.71As quantum wells layer after thermal treatment. CL emissions from the defect core have higher emission energy than those from the defect-free regions. The defect core distribution, which was associated with indium segregation gradient distribution, showed asymmetric character.

11.
Opt Express ; 24(25): 29321-29328, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958592

RESUMEN

In this paper, we demonstrate high power, dual-wavelength (dual-λ) lasing stemming from bimodal-sized InGaAs/GaAs quantum dots (QDs). The device exhibits simultaneous dual-λ lasing at 1015.2 nm and 1023.0 nm with total power of 165.6 mW at 700 mA under room temperature continuous wave (CW) mode. Gaussian fitting analyses of the electroluminescence (EL) spectrum attribute the excellent performance to independent carrier transitions from the first excited states of large dot ensemble (LD ES1) and small dot ensemble (SD ES1), respectively. This formation provides a new possibility to achieve high power dual-λ operation only using Fabry-Pérot (FP) cavity, which is significant for compact size and low fabrication cost.

12.
Opt Express ; 23(25): 32230-7, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26699013

RESUMEN

In this work, a high-power and broadband superluminescent diode (SLD) is achieved utilizing bimodal-sized quantum dots (QDs) as active materials. The device exhibits a 3 dB bandwidth of 178.8 nm with output power of 1.3 mW under continuous-wave (CW) conditions. Preliminary discussion attributes the spectra behavior of the device to carrier transfer between small dot ensemble and large dot ensemble. Our result provides a new possibility to further broadening the spectral bandwidth and improving the CW output power of QD-SLDs.

13.
Appl Opt ; 53(32): 7709-15, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25402994

RESUMEN

The effect of Cs adsorption on the photoemission performance of a reflection-mode GaAlAs photocathode in an ultrahigh vacuum chamber has been investigated. The experiments for Cs/O activation, multiple recaesiation, and degradation are performed on a GaAlAs photocathode. Meanwhile, the Cs/O activated and recaesiated photocurrent curves, degraded photocurrent curves, and spectral response curves are measured and analyzed. Besides, the performance parameters of the photocathodes are obtained by using the formula to fit with the experimental quantum efficiency curves. The results show that the Cs atoms not only make the atomically clean surface form the negative electron affinity, but also make the degraded photocathode recover to a good level. The quantum efficiency and the lifetime of GaAlAs photocathode become lower with increasing the recaesiation times.

14.
Opt Express ; 19(13): 12569-81, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21716498

RESUMEN

Vertical-cavity surface-emitting lasers emitting at 808 nm with unstrained GaAs/Al0.3Ga0.7As, tensilely strained GaAs(x)P(1-x)/Al0.3Ga0.7As and compressively strained In(1-x-y)Ga(x)Al(y)As/Al0.3Ga0.7As quantum-well active regions have been investigated. A comprehensive model is presented to determine the composition and width of these quantum wells. The numerical simulation shows that the gain peak wavelength is near 800 nm at room temperature for GaAs well with width of 4 nm, GaAs0.87P0.13 well with width of 13 nm and In0.14Ga0.74Al0.12As well with width of 6 nm. Furthermore, the output characteristics of the three designed quantum-well VCSELs are studied and compared. The results indicate that In0.14Ga0.74Al0.12As is the most appropriate candidate for the quantum well of 808-nm VCSELs.


Asunto(s)
Aluminio/química , Arsénico/química , Arsenicales/química , Galio/química , Rayos Láser , Puntos Cuánticos , Diseño de Equipo , Rayos Infrarrojos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...