Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 87(8): 083502, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27587118

RESUMEN

The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 µA-500 µA; the typical current used is 72 µA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036408, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19905231

RESUMEN

A magnetic deflection-energy analyzer and Faraday trap diagnostic have been used to make measurements of divergent deuterium anion flow in the inertial electrostatic confinement experiment at the University of Wisconsin-Madison (UW-IEC) [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, I. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)], a device to confine high-energy light ions in a spherically symmetric electrostatic potential well. Deuterium anion current densities as high as 8.5 microA/cm2 have been measured at the wall of the UW-IEC device, 40 cm from the surface of the device cathode with a detector assembly of admittance area 0.7 cm2. Energy spectra obtained using a magnetic deflection-energy analyzer diagnostic indicate the presence of D2(-), and D- ions produced through thermal electron attachment near the device cathode, as well as D- ions produced via charge-transfer processes between the anode and cathode of the device.


Asunto(s)
Deuterio/química , Modelos Químicos , Aniones , Simulación por Computador , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...