Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 30(13): 1506-17, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21119595

RESUMEN

Mice lacking c-fos develop osteopetrosis due to a block in osteoclast differentiation. Carboxy-terminal phosphorylation of Fos on serine 374 by ERK1/2 and serine 362 by RSK1/2 regulates Fos stability and transactivation potential in vitro. To assess the physiological relevance of Fos phosphorylation in vivo, serine 362 and/or serine 374 was replaced by alanine (Fos362A, Fos374A and FosAA) or by phospho-mimetic aspartic acid (FosDD). Homozygous mutants were healthy and skeletogenesis was largely unaffected. Fos C-terminal phosphorylation, predominantly on serine 374, was found important for osteoclast differentiation in vitro and affected lipopolysaccharide (LPS)-induced cytokine response in vitro and in vivo. Importantly, skin papilloma development was delayed in FosAA, Fos362A and Rsk2-deficient mice, accelerated in FosDD mice and unaffected in Fos374A mutants. Furthermore, the related Fos protein and putative RSK2 target Fra1 failed to substitute for Fos in papilloma development. This indicates that phosphorylation of serines 362 and 374 exerts context-dependent roles in modulating Fos activity in vivo. Inhibition of Fos C-terminal phosphorylation on serine 362 by targeting RSK2 might be of therapeutic relevance for skin tumours.


Asunto(s)
Huesos/metabolismo , Transformación Celular Neoplásica/metabolismo , Citocinas/biosíntesis , Homeostasis/fisiología , Proteínas Proto-Oncogénicas c-fos/fisiología , Neoplasias Cutáneas/etiología , Animales , Remodelación Ósea , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Fosforilación , Fosfoserina/metabolismo
2.
Gastroenterology ; 121(1): 170-83, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11438506

RESUMEN

BACKGROUND AND AIMS: Cholestasis is associated with retention of potentially toxic bile acids and alterations in hepatocellular transporter expression. Conversely, nontoxic ursodeoxycholic acid (UDCA) stimulates bile secretion and counteracts cholestasis. This study aimed to determine the effects of UDCA and cholic acid (CA) on the expression of hepatocellular transporters for bile acids (Ntcp, Bsep), organic anions (Oatp1, Mrp2), organic cations (Mdr1a/b), and phospholipids (Mdr2) in mouse liver. METHODS: Bile flow/composition was analyzed in UDCA- or CA-fed mice. Transporter expression was studied by reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence microscopy. RESULTS: UDCA had no effect on basolateral Ntcp and down-regulated Oatp1, whereas canalicular Bsep and Mrp2 were up-regulated. CA down-regulated basolateral Ntcp and Oatp1, whereas canalicular Bsep, Mrp2, and Mdr1a/b were up-regulated. Neither UDCA nor CA affected Mdr2 expression. Both UDCA and CA stimulated biliary bile acid and glutathione excretion, although only CA increased phospholipid and cholesterol excretion. CONCLUSIONS: Down-regulation of basolateral and up-regulation of canalicular transporters in response to CA may represent a defense mechanism, in an attempt to prevent hepatocellular accumulation of potentially toxic bile acids. The therapeutic effects of UDCA may be caused in part by stimulation of canalicular transporter expression in the absence of hepatocellular toxicity.


Asunto(s)
Conductos Biliares/metabolismo , Ácido Cólico/farmacología , Hígado/efectos de los fármacos , Ácido Ursodesoxicólico/farmacología , Administración Oral , Animales , Ácidos y Sales Biliares/metabolismo , Transporte Biológico/efectos de los fármacos , Ácido Cólico/administración & dosificación , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/efectos de los fármacos , Ácido Ursodesoxicólico/administración & dosificación
3.
Hepatology ; 33(3): 633-46, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11230744

RESUMEN

Reduced hepatobiliary transporter expression could explain impaired hepatic uptake and excretion of bile salts and other biliary constituents resulting in cholestasis and jaundice. Because little is known about alterations of hepatobiliary transport systems in human cholestatic liver diseases, it was the aim of this study to investigate such potential changes. Hepatic mRNA levels in hepatobiliary transport systems for bile salts (NTCP, BSEP), organic anions (OATP2, MRP2, MRP3), organic cations (MDR1), phospholipids (MDR3), and aminophospholipids (FIC1) were determined in 37 human liver biopsies and control livers by competitive reverse-transcription polymerase chain reaction (RT-PCR). Transporter tissue distribution was investigated by immunofluorescence microscopy. In patients with inflammation-induced icteric cholestasis (mainly cholestatic alcoholic hepatitis), mRNA levels of NTCP, OATP2, and BSEP were reduced by 41% (P <.001), 49% (P <.005), and 34% (P <.05) compared with controls, respectively. In addition, NTCP and BSEP immunostaining was reduced. MRP2 mRNA levels remained unchanged, but canalicular immunolabeling for MRP2 was also decreased. mRNA expression of MRP3, MDR1, MDR3, and FIC1 remained unchanged. In contrast to the alterations of transporter expression in inflammation-induced icteric cholestasis, transporter expression did not change in anicteric cholestasis caused by primary biliary cirrhosis (PBC) stages I and II. In conclusion, reduced expression of hepatobiliary transport systems for bile salts and other organic anions may contribute to inflammation-induced cholestasis in humans. Reduction of transporter gene expression can occur at the mRNA level as observed for NTCP, OATP2, and BSEP. However, reduced MRP2 immunostaining in the presence of conserved MRP2 mRNA levels suggests an additional role for posttranscriptional/posttranslational mechanisms.


Asunto(s)
Conductos Biliares/metabolismo , Proteínas Portadoras/metabolismo , Colestasis/metabolismo , Hígado/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/genética , Adulto , Aniones/metabolismo , Ácidos y Sales Biliares/metabolismo , Biopsia , Proteínas Portadoras/genética , Colestasis/patología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Valores de Referencia
4.
Eur J Biochem ; 268(4): 914-24, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11179957

RESUMEN

Squalene epoxidase is an essential enzyme in the ergosterol-biosynthesis pathway. It catalyzes the epoxidation of squalene to 2,3-oxidosqualene and is the specific target of the antifungal drug terbinafine. Treatment of yeast cells with this inhibitor leads to squalene accumulation and sterol depletion. As ergosterol fulfils several essential functions, each requiring optimal sterol concentrations, synthesis of sterols in yeast must be tightly regulated. This study focuses on the sterol-mediated regulation of expression of the ERG1 gene, which codes for squalene epoxidase in Saccharomyces cerevisiae. Inhibition of ergosterol biosynthesis with terbinafine increases the expression of ERG1 in a concentration-dependent manner to a maximum of sevenfold. Inhibition of later steps in the ergosterol-biosynthetic pathway by ketoconazole, an inhibitor of the lanosterol-14alpha-demethylase, and U18666A, an inhibitor of the squalene-2,3-epoxide-lanosterol cyclase, also induce expression of ERG1, suggesting that ERG1 expression is positively regulated by diminished intracellular ergosterol levels. The regulatory effect of sterols is manifested at the level of transcription. Deletion analysis of the ERG1 promoter identified a novel regulatory DNA sequence element. Two 6-bp direct repeats, separated by 4 bp, AGCTCGGCCGAGCTCG, are unique to the ERG1 promoter. A DNA fragment containing this region confers ergosterol-regulated expression on an otherwise unregulated CYC1 promoter construction. One copy of the 6-bp element, AGCTCG, is sufficient to confer regulation, albeit less effectively than when both elements are present, whereas the removal of both elements from the ERG1 promoter leads to the loss of sterol-dependent ERG1 regulation.


Asunto(s)
Citocromos c , Oxigenasas/genética , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Androstenos/farmacología , Antifúngicos/farmacología , Grupo Citocromo c/genética , Inhibidores Enzimáticos/farmacología , Ergosterol/biosíntesis , Cetoconazol/farmacología , Modelos Químicos , Naftalenos/farmacología , Oxigenasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Elementos de Respuesta , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Escualeno-Monooxigenasa , Terbinafina , Activación Transcripcional/efectos de los fármacos , beta-Galactosidasa/genética
5.
J Cell Biol ; 145(5): 1049-61, 1999 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-10352021

RESUMEN

Mice lacking the AP-1 transcription factor c-Jun die around embryonic day E13.0 but little is known about the cell types affected as well as the cause of embryonic lethality. Here we show that a fraction of mutant E13.0 fetal livers exhibits extensive apoptosis of both hematopoietic cells and hepatoblasts, whereas the expression of 15 mRNAs, including those of albumin, keratin 18, hepatocyte nuclear factor 1, beta-globin, and erythropoietin, some of which are putative AP-1 target genes, is not affected. Apoptosis of hematopoietic cells in mutant livers is most likely not due to a cell-autonomous defect, since c-jun-/- fetal liver cells are able to reconstitute all hematopoietic compartments of lethally irradiated recipient mice. A developmental analysis of chimeras showed contribution of c-jun-/- ES cell derivatives to fetal, but not to adult livers, suggesting a role of c-Jun in hepatocyte turnover. This is in agreement with the reduced mitotic and increased apoptotic rates found in primary liver cell cultures derived from c-jun-/- fetuses. Furthermore, a novel function for c-Jun was found in heart development. The heart outflow tract of c-jun-/- fetuses show malformations that resemble the human disease of a truncus arteriosus persistens. Therefore, the lethality of c-jun mutant fetuses is most likely due to pleiotropic defects reflecting the diversity of functions of c-Jun in development, such as a role in neural crest cell function, in the maintenance of hepatic hematopoiesis and in the regulation of apoptosis.


Asunto(s)
Corazón/embriología , Corazón/fisiología , Hígado/embriología , Hígado/fisiología , Proteínas Proto-Oncogénicas c-jun/fisiología , Factor de Transcripción AP-1/fisiología , Animales , Apoptosis , Desarrollo Embrionario y Fetal , Eliminación de Gen , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/fisiología , Hígado/patología , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA