RESUMEN
Perinatal exposure to bisphenol A (BPA) in murine models has been reported to affect social behavior and increase anxiety. However, there is little information about the effects of BPA exposure during puberty, a period in which sex hormones influence the maturation and differentiation of the brain. In this work, we evaluated the effect of BPA administration during the juvenile stage (PND 21-50) on anxiety in male and female rats. Newly weaned Wistar rats were treated with BPA (0, 50, or 500 µg/kg/day) for 30 days. To compare the intra- and inter-sex behavioral profiles, rats were evaluated using four different anxiety models: the Open field test (OFT), the Elevated plus maze (EPM), the Light-dark box test (LDBT), and the Defensive burying test (DBT). Males exhibited a clear-cut anxious profile at both doses in all four tests, while no clear behavioral effect of BPA exposure was observed in female rats. The latter showed an altered estrous cycle that initiated earlier in life and had a shorter duration, with the estrous phase predominating. Moreover, the expression of ESR1, ESR2, GABRA1, GRIN1, GR, MR, and AR genes increased in the hippocampus and hypothalamus of male rats treated with 50 µg/kg, but not in females. Our results indicate that BPA consistently induces a higher anxiety profile in male than in female rats, as evidenced predominantly by an increase in passive-coping behaviors and changes in brain gene expression, highlighting the importance of sex in peripubertal behavioral toxicology studies.
RESUMEN
BACKGROUND: The consumption of artificially sweetened beverages (ASBs) has been linked to metabolic alterations. The effect of reducing the regular consumption of these beverages on the metabolism is currently unknown. OBJECTIVE: To evaluate the effect of reducing consumption of ASBs on the metabolism in overweight young adults. DESIGN: A randomised, single-blind, controlled, 12-week, clinical trial was performed in overweight young adults who regularly consume ASBs. The 45 subjects who participated in the study were randomly divided into two groups: (1) control group (n=21) and (2) intervention group (no intake of ASBs, n=24). Body weight and composition, fasting plasma concentrations of glucose, triglycerides, insulin, cholesterol, low-density lipoproteins and high-density lipoproteins were measured at the beginning and end of the study. and the HOMA-IR was calculated. RESULTS: At the end of 12 weeks, the intervention group showed a significant decrease (as opposed to an increase in the control group) in the percentage of change in body weight (-1.22% vs 1.31%, p<0.004), body fat (-6.28% vs 6.15%, p<0.001) and insulin resistance index (-12.06 vs 38.21%, p<0.00002), as well as in levels of glucose (-4.26% vs 0.51%, p<0.05), triglycerides (-14.74% vs 19.90%, p<0.006), insulin (-8.02% vs 39.23%, p<0.00005), cholesterol (-8.71% vs 0.77%, p<0.01) and LDL (-9.46% vs 9.92%, p<0.004). CONCLUSION: A reduction in habitual consumption of ASBs in overweight young adults decreases biochemical measurements, body weight and composition, suggesting a participation in the metabolic processes.
Asunto(s)
Sobrepeso , Edulcorantes , Bebidas Endulzadas Artificialmente , Peso Corporal , Factores de Riesgo Cardiometabólico , Colesterol , Glucosa , Humanos , Insulina , Método Simple Ciego , Edulcorantes/efectos adversos , Triglicéridos , Adulto JovenRESUMEN
INTRODUCTION: Bariatric surgery is a relatively safe surgical procedure with a high success rate. However, recent reports indicate a higher prevalence of alcohol or substance abuse disorder in this patient group. The purpose of this study was to review the related evidence to serve as a reference for multidisciplinary teams who treat these patients. METHODS: We searched the PubMed and CENTRAL databases. The odds ratios were extracted from the different articles, comparing the prevalence of the abuse of alcohol or other substances in the postoperative period versus preoperative levels. We also compared the prevalence of alcohol use disorder after different types of bariatric surgery. RESULTS: A total of 49 121 bariatric patients (80.8% female) were evaluated for alcohol use disorder. In general, bariatric surgery was found to be associated with an increase in the prevalence of alcohol abuse (4.58 ± 5.3 vs. 1.58 ± 10.7% in the preoperative period). We also found that the population of patients who underwent RYGB procedures had a higher prevalence of alcohol use disorder than patients who underwent another type of surgery (OR: 1.83; 95% CI: 1.51-2.21). The prevalence of substance abuse disorder (other than alcohol) after this procedure is less studied, although there appears to be an increased risk of abuse of certain substances. CONCLUSIONS: Bariatric surgery is the best treatment for obesity and its complications. The evidence reviewed suggests that it correlates with a modest but consistent increase in the prevalence of abuse of alcohol and other substances. Medical teams who treat bariatric patients must be informed about this eventuality for its timely prevention, diagnosis and treatment.
Asunto(s)
Alcoholismo , Cirugía Bariátrica , Trastornos Relacionados con Sustancias , Alcoholismo/epidemiología , Cirugía Bariátrica/efectos adversos , Etanol , Femenino , Humanos , Masculino , Obesidad/epidemiología , Trastornos Relacionados con Sustancias/epidemiologíaRESUMEN
BACKGROUND: The consumption of artificially sweetened beverages (ASBs) has been linked to metabolic alterations. The effect of reducing the regular consumption of these beverages on the metabolism is currently unknown. OBJECTIVE: To evaluate the effect of reducing consumption of ASBs on the metabolism in overweight young adults. DESIGN: A randomised, single-blind, controlled, 12-week, clinical trial was performed in overweight young adults who regularly consume ASBs. The 45 subjects who participated in the study were randomly divided into two groups: (1) control group (n=21) and (2) intervention group (no intake of ASBs, n=24). Body weight and composition, fasting plasma concentrations of glucose, triglycerides, insulin, cholesterol, low-density lipoproteins and high-density lipoproteins were measured at the beginning and end of the study. and the HOMA-IR was calculated. RESULTS: At the end of 12 weeks, the intervention group showed a significant decrease (as opposed to an increase in the control group) in the percentage of change in body weight (-1.22% vs 1.31%, p<0.004), body fat (-6.28% vs 6.15%, p<0.001) and insulin resistance index (-12.06 vs 38.21%, p<0.00002), as well as in levels of glucose (-4.26% vs 0.51%, p<0.05), triglycerides (-14.74% vs 19.90%, p<0.006), insulin (-8.02% vs 39.23%, p<0.00005), cholesterol (-8.71% vs 0.77%, p<0.01) and LDL (-9.46% vs 9.92%, p<0.004). CONCLUSION: A reduction in habitual consumption of ASBs in overweight young adults decreases biochemical measurements, body weight and composition, suggesting a participation in the metabolic processes.
RESUMEN
[This corrects the article DOI: 10.3389/fnins.2021.579263.].
RESUMEN
Hepatic encephalopathy (HE) is one of the most disabling metabolic diseases. It consists of a complication of liver disease through the action of neurotoxins, such as excessive production of ammonia from liver, resulting in impaired brain function. Its prevalence and incidence are not well known, although it has been established that up to 40% of cirrhotic patients may develop HE. Patients with HE episodes display a wide range of neurological disturbances, from subclinical alterations to coma. Recent evidence suggests that the resolution of hepatic encephalopathy does not fully restore cognitive functioning in cirrhotic patients. Therefore, the aim of this review was to evaluate the evidence supporting the presence of lingering cognitive deficits in patients with a history of HE compared to patients without HE history and how liver transplant affects such outcome in these patients. We performed two distinct meta-analysis of continuous outcomes. In both cases the results were pooled using random-effects models. Our results indicate that cirrhotic patients with a history of HE show clear cognitive deficits compared control cirrhotic patients (Std. Mean Difference (in SDs) = -0.72 [CI 95%: -0.94, -0.50]) and that these differences are not fully restored after liver transplant (Std. Mean Difference (in SDs) = -0.72 [CI 95%: -0.94, -0.50]).
RESUMEN
BACKGROUND: Cervical cancer is a major public health issue worldwide, occurring in the vast majority of cases (85%) in low-income countries. Human papillomavirus (HPV) mainly infects the mucosal epithelium, and a small portion causes over 600,000 cases every year worldwide at various anatomical spots, mainly leading to anogenital and head and neck. INTRODUCTION: The E6 oncoprotein encoded by cancer-associated alpha HPV can transform epithelial cells into tumorigenic tissue. Therapy for this infection and blocking of the HPV E6 oncoprotein could be provided with cost-effective and abundant natural products which are an exponentially growing topic in the literature. Finding an active natural compound that readily blocks HPV E6 oncoprotein which could be available for developing countries without expensive extraction processes or costly synthetic pathways is of major interest. METHODS: Molecular dynamics simulation was performed using the most up-to-date AMBER protein force field ff14SB and a GPU enabled high performance computing cluster. RESULTS: In this research, we present a study of the binding properties between 10 selected natural compounds that are readily available with two variants of the E6 oncoprotein types (HPV-16 and HPV-18) using 10+ microsecond molecular dynamics simulations. CONCLUSION: Our results suggest that crocetin, ergosterol peroxide and κ-carrageenan natural products bind strongly to both HPV-16 and HPV-18 and could potentially serve as a scaffolding for further drug development.
Asunto(s)
Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Proteínas de Unión al ADN/metabolismo , Simulación de Dinámica Molecular , Proteínas Oncogénicas Virales/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Unión al ADN/química , Proteínas Oncogénicas Virales/química , Unión Proteica , Conformación Proteica , Proteínas Represoras/química , RiesgoRESUMEN
Every year, more than 500,000 new cases of cervical cancer are reported, making it the fourth leading cause of cancer globally. Although human papillomavirus (HPV) vaccines show promise as a protective measure, HPV-related cancers remain a public health problem since the vaccines, which are only specific to certain viral types, are unavailable for mass distribution. Furthermore, the effects of toxicity following ionizing radiation therapy have reoriented views toward the search for radiosensitizers that can reduce toxicity as a consequence of decreased radiation doses. Here, we isolated ergosterol peroxide (EP) from Pleurotus ostreatus and purified it to test its potential effects in vitro. We thus observed that a gradual increase in EP dose correlates with a loss of viability in HeLa and CaSki cervical cell lines. Dose/response curves were constructed using cervical cancer cell lines, as well as normal human peripheral blood mononuclear cells. The selectivity of EP in human lymphocytes and cervical cancer cell lines was tested, and no toxicity was found in normal cells. A combination of treatments revealed a radiosensitizer effect in HeLa cells, when measuring the exposure to EP followed by irradiation with 137Cs. Our findings suggest that EP may be effective as a radiosensitizer in treating cervical cancer.
Asunto(s)
Ergosterol/análogos & derivados , Extractos Vegetales/farmacología , Pleurotus/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias del Cuello Uterino/radioterapia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Ergosterol/farmacología , Femenino , Humanos , Tolerancia a Radiación , Neoplasias del Cuello Uterino/fisiopatologíaRESUMEN
Plant-derived compounds have recently attracted greater interest in the field of new therapeutic agent development. These compounds have been widely screened for their pharmacological effects. Polyphenols, such as soy-derived isoflavones, also called phytoestrogens, have been extensively studied due to their ability to inhibit carcinogenesis. These compounds are chemically similar to 17ß-estradiol, and mimic the binding of estrogens to its receptors, exerting estrogenic effects in target organs. Genistein is an isoflavone derived from soy-rich products and accounts for about 60% of total isoflavones found in soybeans. Genistein has been reported to exhibit several biological effects, such as anti-tumor activity (inhibition of cell proliferation, regulation of the cell cycle, induction of apoptosis), improvement of glucose metabolism, impairment of angiogenesis in both hormone-related and hormone-unrelated cancer cells, reduction of peri-menopausal and postmenopausal hot flashes, and modulation of antioxidant effects. Additionally, epidemiological and clinical studies have reported health benefits of genistein in many chronic diseases, such as cardiovascular disease, diabetes, and osteoporosis, and aid in the amelioration of typical menopausal symptoms, such as anxiety and depression. Although the biological effects are promising, certain limitations, such as low bioavailability, biological estrogenic activity, and effects on target organs, have limited the clinical applications of genistein to some extent. Moreover, studies report that modification of its molecular structure may eliminate the biological estrogenic activity and its effects on target organs. In this review, we summarize the potential benefits of genistein on menopause symptoms and menopause-related diseases like cardiovascular, osteoporosis, obesity, diabetes, anxiety, depression, and breast cancer.
Asunto(s)
Genisteína/farmacología , Menopausia/efectos de los fármacos , Antidepresivos/farmacología , Cardiotónicos/farmacología , Femenino , Genisteína/química , Humanos , Sistema Vasomotor/efectos de los fármacosRESUMEN
Brown seaweeds contain bioactive compounds that show anti-tumorigenic effects. These characteristics have been repeatedly observed in the Lessoniaceae family. Egregia menziesii, a member of this family, is distributed in the North Pacific and its properties have been barely studied. We evaluated herein the cytotoxic and anti-proliferative activity of extracts of this seaweed, through toxicity assay in Artemia salina and lymphocytes, and MTT proliferation assay, in Bergmann glia cells, 3T3-L1 and brain cancer cell lines. E. menziesii's extracts inhibited the spread of all the tested cell lines. The hexane extract showed the highest cytotoxic activity, while the methanol extract was moderately cytotoxic. Interestingly, seaweed extracts displayed a selective inhibition pattern. These results suggest that E. menziesii's extracts might be good candidates for cancer prevention and the development of novel chemotherapies due to its highest cytotoxicity in transformed cells compare to glia primary cultures.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Algas Marinas/química , Animales , Neoplasias Encefálicas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , RatasRESUMEN
Glutamate, the major excitatory amino acid, activates a wide variety of signal transduction cascades. This neurotransmitter is involved in photic entrainment of circadian rhythms, which regulate physiological and behavioral functions. The circadian clock in vertebrates is based on a transcription-translation feedback loop in which Brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like protein 1 (BMAL1) acts as transcriptional activator of others clock genes. This protein is expressed in nearly all suprachiasmatic nucleus neurons, as well as in the granular layer of the cerebellum. In this context, we decided to investigate the role of glutamate in the molecular mechanisms involved in the processes of transcription/translation of BMAL1 protein. To this end, primary cultures of chick cerebellar Bergmann glial cells were stimulated with glutamatergic ligands and we found that BMAL1 levels increased in a dose- and time dependent manner. Additionally, we studied the phosphorylation of serine residues in BMAL1 under glutamate stimulation and we were able to detect an increase in the phosphorylation of this protein. The increased expression of BMAL1 is most probably the result of a stabilization of the protein after it has been phosphorylated by the cyclic AMP-dependent protein kinase and/or the Ca(2+)/diacylglycerol dependent protein kinase. The present results strongly suggest that glutamate participates in regulating BMAL1 in glial cells and that these cells might prove to be important in the control of circadian rhythms in the cerebellum.
Asunto(s)
Factores de Transcripción ARNTL/fisiología , Ácido Glutámico/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Animales , Células Cultivadas , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Transducción de SeñalRESUMEN
We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings.
Asunto(s)
Análisis Mutacional de ADN/instrumentación , Sondas de ADN/genética , ADN Viral/genética , Variación Genética/genética , Papillomavirus Humano 18/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Polimorfismo de Nucleótido Simple/genética , Diseño de Equipo , Análisis de Falla de Equipo , Papillomavirus Humano 18/aislamiento & purificación , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection.
Asunto(s)
Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Células Cultivadas , Embrión de Pollo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteína Quinasa C/metabolismo , Receptor trkB/fisiología , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismoRESUMEN
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, plays an important role in neuronal development and synaptic plasticity. It activates a variety of signaling pathways that regulate gene expression at the transcriptional and translational levels. Within glial cells, besides transcription, glutamate also regulates translation initiation and elongation. The mammalian target of rapamycin (mTOR), a key participant in the translation process, represents an important regulatory locus for translational control. Therefore, in the present communication we sought to characterize the mTOR phosphorylation pattern after glutamate treatment in chick cerebellar Bergmann glia primary cultures. A time- and dose-dependent increase in mTOR Ser 2448 phosphorylation was found. Pharmacological tools established that the glutamate effect is mediated through ionotropic and metabotropic receptors and interestingly, the glutamate transporter system is also involved. The signaling cascade triggered by glutamate includes an increase in intracellular Ca2+ levels, and the activation of the p60(Src)/PI-3K/PKB pathway. These results suggest that glia cells participate in the activity-dependent change in the brain protein repertoire.
Asunto(s)
Ácido Glutámico/farmacología , Neuroglía/efectos de los fármacos , Proteínas Quinasas/metabolismo , Animales , Células Cultivadas , Pollos , Electroforesis en Gel de Poliacrilamida , Neuroglía/metabolismo , Fosforilación , Proteínas Quinasas/química , Serina/metabolismo , Serina-Treonina Quinasas TORRESUMEN
Glutamate (Glu) is the major excitatory neurotransmitter in the Central Nervous System (CNS). Ionotropic and metabotropic glutamate receptors (GluRs) are present in neurons and glial cells and are involved in gene expression regulation. Mitogen-activated proteins kinases (MAPK) are critical for all the membrane to nuclei signaling pathways described so far. In cerebellar Bergmann glial cells, glutamate-dependent transcriptional regulation is partially dependent on p42/44 MAPK activity. Another member of this kinase family, p38 MAPK is activated by non-mitogenic stimuli through its Thr180/Tyr182 phosphorylation and phosphorylates cytoplasmic and nuclear protein targets involved in translational and transcriptional events. Taking into consideration that the role of p38MAPK in glial cells is not well understood, we demonstrate here that glutamate increases p38 MAPK phosphorylation in a time and dose dependent manner in cultured chick cerebellar Bergmann glial cells (BGC). Moreover, p38 MAPK is involved in the glutamate-induced transcriptional activation in these cells. Ionotropic as well as metabotropic glutamate receptors participate in p38 MAPK activation. The present findings demonstrate the involvement of p38 MAPK in glutamate-dependent gene expression regulation in glial cells.