Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 263: 115348, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597291

RESUMEN

Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Tritolilfosfatos , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Retardadores de Llama/toxicidad , Proteínas de Neoplasias , Proteínas de Transporte de Membrana/genética , Contaminantes Ambientales/toxicidad
2.
Toxicol In Vitro ; 90: 105592, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37030647

RESUMEN

Chimeric mice with humanized liver are thought to represent a sustainable source of isolated human hepatocytes for in vitro studying detoxification of drugs in humans. Because drug transporters are now recognized as key-actors of the hepatic detoxifying process, the present study was designed to characterize mRNA expression and activity of main hepatic drug transporters in cryopreserved human hepatocytes isolated from chimeric TK-NOG mice and termed HepaSH cells. Such cells after thawing were shown to exhibit a profile of hepatic solute carrier (SLC) and ATP-binding cassette (ABC) drug transporter mRNA levels well correlated to those found in cryopreserved primary human hepatocytes or human livers. HepaSH cells used either as suspensions or as 24 h-cultures additionally displayed notable activities of uptake SLCs, including organic anion transporting polypeptides (OATPs), organic anion transporter 2 (OAT2) or sodium-taurocholate co-transporting polypeptide (NTCP). SLC transporter mRNA expression, as well as SLC activities, nevertheless fell in HepaSH cells cultured for 120 h, which may reflect a partial dedifferentiation of these cells with time in culture in the conventional monolayer culture conditions used in the study. These data therefore support the use of cryopreserved HepaSH cells as either suspensions or short-term cultures for drug transport studies.


Asunto(s)
Hígado , Transportadores de Anión Orgánico , Humanos , Ratones , Animales , Suspensiones , Hígado/metabolismo , Hepatocitos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , ARN Mensajero/metabolismo
3.
Eur J Drug Metab Pharmacokinet ; 47(5): 621-637, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35793042

RESUMEN

Chimeric mice with humanized livers constitute an attractive emergent experimental model for investigating human metabolism and disposition of drugs. The present review was designed to summarize key findings about the use of this model for studying human hepatic drug transporters, which are now recognized as important players in pharmacokinetics and consequently have to be considered from a regulatory perspective during pharmaceutical drug development. The reviewed data indicate that chimeric mice with humanized livers have been successfully used for analysing the implications of human hepatic drug transporters for drug hepatobiliary elimination, drug-drug interactions and drug-induced cholestasis. Such transporter studies have been performed in vivo with chimeric mice and/or in vitro with human hepatocytes isolated from humanized liver and used either in suspension or in culture. The residual presence of mouse hepatocytes and the potential morphological/histological alterations of the humanized liver, as well as its immunodeficient mouse environment, have, however, to be considered when using chimeric mice with humanized livers for transporter studies. Finally, if the proof of concept of applying chimeric mice with humanized livers to hepatic drug transport is established, more experimental data on this topic, including from standardization approaches, are likely required to completely and accurately demonstrate the robustness, convenience and added value of this chimeric mouse model for drug transporter studies.


Asunto(s)
Hepatocitos , Hígado , Animales , Quimera/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Tasa de Depuración Metabólica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...