Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38271099

RESUMEN

A distinct adipose tissue distribution pattern was observed in patients with methylmalonyl-CoA mutase deficiency, an inborn error of branched-chain amino acid (BCAA) metabolism, characterized by centripetal obesity with proximal upper and lower extremity fat deposition and paucity of visceral fat, that resembles familial multiple lipomatosis syndrome. To explore brown and white fat physiology in methylmalonic acidemia (MMA), body composition, adipokines, and inflammatory markers were assessed in 46 patients with MMA and 99 matched controls. Fibroblast growth factor 21 levels were associated with acyl-CoA accretion, aberrant methylmalonylation in adipose tissue, and an attenuated inflammatory cytokine profile. In parallel, brown and white fat were examined in a liver-specific transgenic MMA mouse model (Mmut-/- TgINS-Alb-Mmut). The MMA mice exhibited abnormal nonshivering thermogenesis with whitened brown fat and had an ineffective transcriptional response to cold stress. Treatment of the MMA mice with bezafibrates led to clinical improvement with beiging of subcutaneous fat depots, which resembled the distribution seen in the patients. These studies defined what we believe to be a novel lipodystrophy phenotype in patients with defects in the terminal steps of BCAA oxidation and demonstrated that beiging of subcutaneous adipose tissue in MMA could readily be induced with small molecules.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Factores de Crecimiento de Fibroblastos , Lipodistrofia , Animales , Humanos , Ratones , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Ratones Transgénicos
2.
Microorganisms ; 11(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37764045

RESUMEN

Round bodies in spirochete cultures have been a controversial subject since their description seven decades ago. We report the existence of round bodies (spherical cells) in cultures of Mucispirillum schaedleri, a spiral bacterium phylogenetically distant from spirochetes. Furthermore, when grown in biofilms, M. schaedleri demonstrates a unique morphology known as cording, which has been previously described only in mycobacteria. Thus, M. schaedleri has two distinct features, each previously thought to be unique to two different phylogenetically distant groups of bacteria.

3.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37717940

RESUMEN

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Asunto(s)
Inflamación , Riñón , Ratones , Humanos , Animales , Anciano , Lactante , Recién Nacido , Riñón/metabolismo , Inflamación/metabolismo , Estrógenos/metabolismo , Mitocondrias/metabolismo , Citocinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
4.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395281

RESUMEN

Understanding how skeletal muscle fiber proportions are regulated is vital to understanding muscle function. Oxidative and glycolytic skeletal muscle fibers differ in their contractile ability, mitochondrial activity, and metabolic properties. Fiber-type proportions vary in normal physiology and disease states, although the underlying mechanisms are unclear. In human skeletal muscle, we observed that markers of oxidative fibers and mitochondria correlated positively with expression levels of PPARGC1A and CDK4 and negatively with expression levels of CDKN2A, a locus significantly associated with type 2 diabetes. Mice expressing a constitutively active Cdk4 that cannot bind its inhibitor p16INK4a, a product of the CDKN2A locus, were protected from obesity and diabetes. Their muscles exhibited increased oxidative fibers, improved mitochondrial properties, and enhanced glucose uptake. In contrast, loss of Cdk4 or skeletal muscle-specific deletion of Cdk4's target, E2F3, depleted oxidative myofibers, deteriorated mitochondrial function, and reduced exercise capacity, while increasing diabetes susceptibility. E2F3 activated the mitochondrial sensor PPARGC1A in a Cdk4-dependent manner. CDK4, E2F3, and PPARGC1A levels correlated positively with exercise and fitness and negatively with adiposity, insulin resistance, and lipid accumulation in human and rodent muscle. All together, these findings provide mechanistic insight into regulation of skeletal muscle fiber-specification that is of relevance to metabolic and muscular diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Musculares , Ratones , Animales , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Obesidad/metabolismo , Estrés Oxidativo , Desarrollo de Músculos , Factor de Transcripción E2F3/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
5.
Comp Med ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882188

RESUMEN

C57BL/6J (B6) mice are commonly affected by ulcerative dermatitis (UD), a disease of unknown etiology with poor response to treatment. To study the possible role of diet in UD, we compared skin changes in B6 female mice fed a high-fat diet with those of mice fed a control diet. In addition, skin samples from mice with no, mild, moderate, and severe clinical signs of UD were examined by light and transmission electron microscopy (TEM). Mice fed a high-fat diet for 2 mo had more skin mast cell degranulation than did mice fed the control diet for the same period. Regardless of diet, older mice had more skin mast cells and more of these cells were degranulating as compared with younger mice. Microscopic changes in very early lesions were characterized by an increase in dermal mast cells and degranulation with focal areas of epidermal hyperplasia with or without hyperkeratosis. As the condition progressed, a mixed but predominantly neutrophilic inflammatory cell infiltrate appeared in the dermis, with or without epidermal erosion and scab formation. TEM showed that dermal mast cell membranes had disrupted and released of large number of electron dense granules, whereas degranulated mast cells were filled with isolated and coalescing empty spaces due to fusion of granule membranes. Ulceration appeared to occur very quickly, probably as result of intense scratching due to the pruritogenic properties of the histamine released from mast cell granules. This study showed a direct correlation between dietary fat and skin mast cell degranulation in female B6 mice. In addition, the number of skin mast cells and degranulation rates was higher in older mice. Treatments directed at preventing mast cell degranulation may result in better outcomes when applied early in UD cases. As noted previously in studies using caloric restriction, lower fat content in rodent diets may help prevent UD.

6.
NPJ Genom Med ; 8(1): 4, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765070

RESUMEN

Autophagy regulates the degradation of damaged organelles and protein aggregates, and is critical for neuronal development, homeostasis, and maintenance, yet few neurodevelopmental disorders have been associated with pathogenic variants in genes encoding autophagy-related proteins. We report three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment, and similar facial characteristics. Rare, conserved, bi-allelic variants were identified in ATG4D, encoding one of four ATG4 cysteine proteases important for autophagosome biogenesis, a hallmark of autophagy. Autophagosome biogenesis and induction of autophagy were intact in cells from affected individuals. However, studies evaluating the predominant substrate of ATG4D, GABARAPL1, demonstrated that three of the four ATG4D patient variants functionally impair ATG4D activity. GABARAPL1 is cleaved or "primed" by ATG4D and an in vitro GABARAPL1 priming assay revealed decreased priming activity for three of the four ATG4D variants. Furthermore, a rescue experiment performed in an ATG4 tetra knockout cell line, in which all four ATG4 isoforms were knocked out by gene editing, showed decreased GABARAPL1 priming activity for the two ATG4D missense variants located in the cysteine protease domain required for priming, suggesting that these variants impair the function of ATG4D. The clinical, bioinformatic, and functional data suggest that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of this syndromic neurodevelopmental disorder.

7.
Thyroid ; 33(2): 239-250, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36103385

RESUMEN

Background: Mutations of thyroid hormone receptor α (TRα1) result in resistance to thyroid hormone (RTHα), exhibiting symptoms of retarded growth, delayed bone maturation, anemia, and severe constipation. Using a mouse model of RTHα (Thra1PV/+ mouse), we aimed at understanding the molecular basis underlying the severe constipation observed in patients. Methods: The Thra1PV/+ mouse expresses a strong dominant negative mutant, PV, which has lost T3 binding and transcription activity. Thra1PV/+ mouse faithfully reproduces growth abnormalities and anemia as shown in RTHα patients and therefore is a valid model to examine causes of severe constipation in patients. We used histopathological analysis, confocal fluorescence imaging, transmission electron microscopy (TEM), and gene expression profiles to comprehensively analyze the colonic abnormalities of Thra1PV/+ mouse. Results: We found a significant increase in colonic transit time and decrease stool water content in Thra1PV/+ mouse, mimicking constipation as found in patients. Histopathological analysis showed expanded lamina propria filled with interstitium fluid between crypt columns, enlarged muscularis mucosa, and increased content of collagen in expanded submucosa. The TEM analysis revealed shorter muscle fibers with wider gap junctions between muscle cells, fewer caveolae, and hypoplastic interstitial cells of Cajal (ICC) in the rectal smooth muscles of Thra1PV/+ mice. These abnormal histological manifestations suggested defective intercellular transfer of small molecules, electrolytes, and signals for communication among muscles cells, validated by Lucifer Yellow transferring assays. Expression of key smooth muscle contractility regulators, such as calmodulin, myosin light-chain kinase, and phosphorylated myosin light chain, was markedly lower, and c-KIT signaling in ICC was attenuated, resulting in decreased contractility of the rectal smooth muscles of Thra1PV/+ mice. Collectively, these abnormal histopathological alterations and diminished contractility regulators led to the constipation exhibited in patients. Conclusions: This is the first demonstration that TRα1 mutants could act to cause abnormal rectum smooth muscle organization, defects in intercellular exchange of small molecules, and decreased expression of contractility regulators to weaken the contractility of rectal smooth muscles. These findings provide new insights into the molecular basis underlying constipation found in RTHα patients.


Asunto(s)
Anemia , Receptores alfa de Hormona Tiroidea , Humanos , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas , Mutación , Estreñimiento/genética
8.
Blood Cells Mol Dis ; 95: 102660, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35366607

RESUMEN

Polymerization of deoxygenated sickle hemoglobin (HbS) leads to erythrocyte sickling. Enhancing activity of the erythrocyte glycolytic pathway has anti-sickling potential as this reduces 2,3-diphosphoglycerate (2,3-DPG) and increases ATP, factors that decrease HbS polymerization and improve erythrocyte membrane integrity. These factors can be modulated by mitapivat, which activates erythrocyte pyruvate kinase (PKR) and improves sickling kinetics in SCD patients. We investigated mechanisms by which mitapivat may impact SCD by examining its effects in the Townes SCD mouse model. Control (HbAA) and sickle (HbSS) mice were treated with mitapivat or vehicle. Surprisingly, HbSS had higher PKR protein, higher ATP, and lower 2,3-DPG levels, compared to HbAA mice, in contrast with humans with SCD, in whom 2,3-DPG is elevated compared to healthy subjects. Despite our inability to investigate 2,3-DPG-mediated sickling and hemoglobin effects, mitapivat yielded potential benefits in HbSS mice. Mitapivat further increased ATP without significantly changing 2,3-DPG or hemoglobin levels, and decreased levels of leukocytosis, erythrocyte oxidative stress, and the percentage of erythrocytes that retained mitochondria in HbSS mice. These data suggest that, even though Townes HbSS mice have increased PKR activity, further activation of PKR with mitapivat yields potentially beneficial effects that are independent of changes in sickling or hemoglobin levels.


Asunto(s)
Anemia de Células Falciformes , 2,3-Difosfoglicerato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/análisis , Humanos , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo , Piperazinas , Quinolinas
9.
J Med Primatol ; 51(2): 93-100, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34971004

RESUMEN

BACKGROUND: Owl monkeys are commonly used in biomedical research which is affected by the high incidence of cardiomyopathy in this species. Occasionally, owl monkeys with no clinical signs of heart disease are found dead and at necropsy show no, or very mild, cardiomyopathy. A possible explanation for sudden death is acute myocardial infarction; however, early myocardial changes may be difficult to assess by conventional stains and light microscopy. METHODS: Complement component C9 immunohistochemistry was performed in paraffin-embedded heart tissue samples from owl monkeys who died suddenly, or were euthanized due to sickness, to determine whether these animals suffered from acute myocardial infarcts. RESULTS AND CONCLUSION: C9 deposits were found in the myocardium of 19 out of 20 (95%) animals. The findings in this study suggest owl monkeys suffer from acute myocardial infarcts, and complement component C9 immunohistochemistry may be a useful diagnostic tool.


Asunto(s)
Cardiomiopatías , Infarto del Miocardio , Animales , Aotidae/fisiología , Muerte Celular , Formaldehído , Inmunohistoquímica , Infarto del Miocardio/diagnóstico , Miocardio , Adhesión en Parafina , Estudios Retrospectivos
10.
Nat Med ; 27(3): 536-545, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33707773

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder characterized by premature death from myocardial infarction or stroke. It is caused by de novo single-nucleotide mutations in the LMNA gene that activate a cryptic splice donor site, resulting in the production of a toxic form of lamin A, which is termed progerin. Here we present a potential genetic therapeutic strategy that utilizes antisense peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) to block pathogenic splicing of mutant transcripts. Of several candidates, PPMO SRP-2001 provided the most significant decrease in progerin transcripts in patient fibroblasts. Intravenous delivery of SRP-2001 to a transgenic mouse model of HGPS produced significant reduction of progerin transcripts in the aorta, a particularly critical target tissue in HGPS. Long-term continuous treatment with SRP-2001 yielded a 61.6% increase in lifespan and rescue of vascular smooth muscle cell loss in large arteries. These results provide a rationale for proceeding to human trials.


Asunto(s)
Oligonucleótidos Antisentido/uso terapéutico , Progeria/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Morfolinos/química
11.
Blood Cells Mol Dis ; 86: 102493, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32927249

RESUMEN

Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.


Asunto(s)
Anemia de Células Falciformes/patología , Células Endoteliales/patología , Estrés Oxidativo , Sustancia Blanca/patología , Anemia de Células Falciformes/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Sustancia Blanca/metabolismo
12.
Thyroid ; 31(2): 315-326, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32762296

RESUMEN

Background: Mutations of thyroid hormone receptor α1 (TRα1) cause resistance to thyroid hormone (RTHα). Patients exhibit growth retardation, delayed bone development, anemia, and bradycardia. By using mouse models of RTHα, much has been learned about the molecular actions of TRα1 mutants that underlie these abnormalities in adults. Using zebrafish models of RTHα that we have recently created, we aimed to understand how TRα1 mutants affect the heart function during this period. Methods: In contrast to human and mice, the thra gene is duplicated, thraa and thrab, in zebrafish. Using CRISPR/Cas9-mediated targeted mutagenesis, we created C-terminal mutations in each of two duplicated thra genes in zebrafish (thraa 8-bp insertion or thrab 1-bp insertion mutations). We recently showed that these mutant fish faithfully recapitulated growth retardation as found in patients and thra mutant mice. In the present study, we used histological analysis, gene expression profiles, confocal fluorescence, and transmission electron microscopy (TEM) to comprehensively analyze the phenotypic characteristics of mutant fish heart during development. Results: We found both a dilated atrium and an abnormally shaped ventricle in adult mutant fish. The retention of red blood cells in the two abnormal heart chambers, and the decreased circulating blood speed and reduced expression of contractile genes indicated weakened contractility in the heart of mutant fish. These abnormalities were detected in mutant fish as early as 35 days postfertilization (juveniles). Furthermore, the expression of genes associated with the sarcomere assembly was suppressed in the heart of mutant fish, resulting in abnormalities of sarcomere organization as revealed by TEM, suggesting that the abnormal sarcomere organization could underlie the bradycardia exhibited in mutant fish. Conclusions: Using a zebrafish model of RTHα, the present study demonstrated for the first time that TRα1 mutants could act to cause abnormal heart structure, weaken contractility, and disrupt sarcomere organization that affect heart functions. These findings provide new insights into the bradycardia found in RTHα patients.


Asunto(s)
Bradicardia/genética , Cardiopatías Congénitas/genética , Mutación , Receptores alfa de Hormona Tiroidea/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Bradicardia/metabolismo , Bradicardia/patología , Bradicardia/fisiopatología , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Contracción Miocárdica , Miocardio/metabolismo , Miocardio/ultraestructura , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Función Ventricular , Pez Cebra/anomalías , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
13.
Front Neurosci ; 14: 601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612506

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in cognitive decline. A unique rat model, TgF344-AD, recapitulates pathological hallmarks of AD. We used a longitudinal design to address the timing of expression of behavioral phenotypes in male and female TgF344-AD rats. In both sexes, we confirmed an age-dependent buildup of amyloid-ß. In the open field, female, but not male, TgF344-AD rats were hypoactive at 6 and 12 months of age but at 18 months the two genotypes were similar in levels of activity response. Both male and female TgF344-AD rats had a deficit in performance on a learning and memory task. Male TgF344-AD, but not female, rats had evidence of hyposmia regardless of age. Rest-activity rhythms followed the typical active/inactive phase in all rats regardless of genotype or age. In males, home cage activity was similar across age and genotype; in females, regardless of genotype animals were less active as they aged. These changes highlight some behavioral markers of disease in the rat model. Early markers of disease may be important in early diagnosis and assessment of efficacy when treatment becomes available.

14.
Brain Res ; 1746: 146968, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533970

RESUMEN

Patients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder. Homozygous (sickling) mice had significant locomotor malperformance characterized by miscoordination and impaired locomotor gait/stepping pattern adaptability. Conversely, Townes homozygous mice had no overall deficits in motor learning, as they were able to associate a conditioning stimulus (high-pitch warning tone) with the presentation of an obstacle and learned to decrease steptimes thereby increasing speed to avoid it. While these animals had no cerebellar strokes, these locomotor and adaptive gait/stepping patterns deficits were associated with oxidative stress, as well as cerebellar vascular endothelial and white matter abnormalities and blood brain barrier disruption, suggestive of ischemic injury. Taken together, these observations suggest that motor and adaptive locomotor deficits in SCD mice mirror some of those described in SCD patients and that ischemic changes in white matter and vascular endothelium and oxidative stress are biologic correlates of those deficits. These findings point to the cerebellum as an area of the central nervous system that is vulnerable to vascular and white matter injury and support the use of SCD mice for studies of the underlying mechanisms of cerebellar dysfunction in SCD.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Cerebelo/fisiopatología , Locomoción/fisiología , Estrés Oxidativo/fisiología , Sustancia Blanca/fisiopatología , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Animales , Ataxia/etiología , Cerebelo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Sustancia Blanca/patología
15.
Comp Med ; 70(3): 266-276, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384942

RESUMEN

An increased incidence of dilated cardiomyopathy and atrial thrombosis was noted in a breeding colony of BALB/c mice deficient in IL4 receptor α. The condition affected mice of both sexes and of various ages, and extensive testing (microbiology, serology, histopathology) failed to ascertain the cause. Transmission electron microscopy of heart samples showed structural defects in the myocardial intercalated disks, characterized by unorganized and heavily convoluted arrangement with lower density and less prominent desmosomes and adherens junctions, widening of the intercellular space, myofibrillar lysis adjacent to intercalated disks, occasional sarcomere lysis with marked myofiber degeneration, vacuolation, accumulation of cell debris, and myelin figures. The intercalated disk contains cell adhesion molecules that form cell junctions, allowing contraction coupling of cardiomyocytes and the electrical and mechanical connection between cardiac fibers. Thus, defects at this level result in poor myocardial contraction, intracardiac blood stagnation, and consequently cardiac dilation with clinical signs of heart failure. The background strain or, potentially, the Cre-loxP-mediated recombination system used to create these mice may have contributed to the elevated incidence of cardiomyopathy and atrial thrombosis in this colony. Due to the backcrossing breeding scheme used, we cannot discount the emergence and colonywide dissemination of a spontaneous mutation that affects the intercalated disk. This report underscores the importance of carefully monitoring genetically modified mice colonies for unexpected phenotypes that may result from spontaneous or unintended mutations or enhanced strain background pathology.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Insuficiencia Cardíaca/metabolismo , Ratones Endogámicos BALB C , Enfermedades de los Roedores , Trombosis/metabolismo , Animales , Cardiomiopatía Dilatada/patología , Femenino , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Insuficiencia Cardíaca/patología , Masculino , Ratones , Microscopía Electrónica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Receptores de Interleucina-4/deficiencia , Trombosis/patología
16.
Mol Metab ; 37: 100981, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283081

RESUMEN

OBJECTIVE: In individuals with mitochondrial disease, respiratory viral infection can result in metabolic decompensation with mitochondrial hepatopathy. Here, we used a mouse model of liver-specific Complex IV deficiency to study hepatic allostasis during respiratory viral infection. METHODS: Mice with hepatic cytochrome c oxidase deficiency (LivCox10-/-) were infected with aerosolized influenza, A/PR/8 (PR8), and euthanized on day five after infection following three days of symptoms. This time course is marked by a peak in inflammatory cytokines and mimics the timing of a common clinical scenario in which caregivers may first attempt to manage the illness at home before seeking medical attention. Metabolic decompensation and mitochondrial hepatopathy in mice were characterized by serum hepatic testing, histology, electron microscopy, biochemistry, metabolomics, and bioenergetic profiling. RESULTS: Following influenza infection, LivCox10-/- mice displayed marked liver disease including hepatitis, enlarged mitochondria with cristae loss, and hepatic steatosis. This pathophysiology was associated with viremia. Primary hepatocytes from LivCox10-/- mice cocultured with WT Kupffer cells in the presence of PR8 showed enhanced lipid accumulation. Treatment of hepatocytes with recombinant TNFα implicated Kupffer cell-derived TNFα as a precipitant of steatosis in LivCox10-/- mice. Eliminating Kupffer cells or blocking TNFα in vivo during influenza infection mitigated the steatosis and mitochondrial morphologic changes. CONCLUSIONS: Taken together, our data shift the narrative of metabolic decompensation in mitochondrial hepatopathy beyond the bioenergetic costs of infection to include an underlying susceptibility to immune-mediated damage. Moreover, our work suggests that immune modulation during metabolic decompensation in mitochondrial disease represents a future viable treatment strategy needing further exploration.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/fisiopatología , Hígado/metabolismo , Enfermedades Mitocondriales/fisiopatología , Alostasis/fisiología , Animales , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Femenino , Hepatitis/metabolismo , Hepatitis/patología , Hepatocitos/metabolismo , Macrófagos del Hígado/metabolismo , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/metabolismo , Infecciones por Orthomyxoviridae
17.
Int J Nephrol Renovasc Dis ; 13: 19-26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32110087

RESUMEN

AIM OF STUDY: To investigate podocyte density in aging diabetic Ins2± and Ins2±, A1AR-/- mouse models in C57Bl/6 background. METHODS: Ins2± mice and especially Ins2±, adenosine A1 receptor knockout mice (Ins2±, A1AR-/-) are mouse models with a phenotype of diabetic nephropathy. Aged mice (at ~40 weeks) were assessed for glomerular filtration barrier function by measuring albuminuria, glomerular filtration, glomerular damage by electron microscopy, and podocyte numbers by Wilms Tumor protein (WT-1) staining. RESULTS: Compared to healthy wild-type mice, both diabetic mouse models developed diabetic nephropathy, including hyperfiltration (p<0.01) and albuminuria (p<0.05). Typical diabetic structural glomerular and podocyte damage was visualized by electron microscopy. Podocyte count per glomerular area (podocyte density) was significantly decreased in both diabetic mouse models (p<0.01). In contrast, no significant correlation was detected between albuminuria and absolute podocyte count per glomerulus. CONCLUSION: The amount of albuminuria as marker of diabetic nephropathy does not correlate with the podocytes density; however, a relative podocyte deficiency became evident with an increase in glomerular area in the diabetic animals, suggesting a relative podocytopenia.

18.
J Clin Med ; 9(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861571

RESUMEN

The rare lysosomal storage disorder Niemann-Pick disease type C1 (NPC1) arises from mutation of NPC1, which encodes a lysosomal transmembrane protein essential for normal transport and trafficking of cholesterol and sphingolipids. NPC1 is highly heterogeneous in both clinical phenotypes and age of onset. Previous studies have reported sub-Mendelian survival rates for mice homozygous for various Npc1 mutant alleles but have not studied the potential mechanisms underlying this phenotype. We performed the first developmental analysis of a Npc1 mouse model, Npc1em1Pav, and discovered significant fetal growth restriction in homozygous mutants beginning at E16.5. Npc1em1Pav/em1Pav mice also exhibited cyanosis, increased respiratory effort, and over 50% lethality at birth. Analysis of neonatal lung tissues revealed lipid accumulation, notable abnormalities in surfactant, and enlarged alveolar macrophages, suggesting that lung abnormalities may be associated with neonatal lethality in Npc1em1Pav/em1Pav mice. The phenotypic severity of the Npc1em1Pav model facilitated this first analysis of perinatal lethality and lung pathology in an NPC1 model organism, and this model may serve as a useful resource for developing treatments for respiratory complications seen in NPC1 patients.

19.
Am J Hum Genet ; 104(6): 1127-1138, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155284

RESUMEN

Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.


Asunto(s)
Ácidos/química , Albinismo/etiología , Canales de Cloruro/genética , Fibroblastos/patología , Variación Genética , Enfermedades por Almacenamiento Lisosomal/etiología , Lisosomas/metabolismo , Albinismo/metabolismo , Albinismo/patología , Animales , Canales de Cloruro/fisiología , Femenino , Fibroblastos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lactante , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Masculino , Ratones , Oocitos/metabolismo , Xenopus laevis
20.
J Mol Med (Berl) ; 97(9): 1231-1243, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31053970

RESUMEN

During infection, hepatocytes must undergo a reprioritization of metabolism, termed metabolic reprogramming. Hepatic metabolic reprogramming in response to infection begins within hours of infection, suggesting a mechanism closely linked to pathogen recognition. Following injection with polyinosinic:polycytidylic acid, a mimic of viral infection, a robust hepatic innate immune response could be seen involving the TNFα pathway at 2 h. Repeated doses led to the adoption of Warburg-like metabolism in the liver as determined by in vivo metabolic imaging, expression analyses, and metabolomics. Hepatic macrophages, Kupffer cells, were able to induce Warburg-like metabolism in hepatocytes in vitro via TNFα. Eliminating macrophages in vivo or blocking TNFα in vitro or in vivo resulted in abrogation of the metabolic phenotype, establishing an immune-metabolic axis in hepatic metabolic reprogramming. Overall, we suggest that macrophages, as early sensors of pathogens, instruct hepatocytes via TNFα to undergo metabolic reprogramming to cope with challenges to homeostasis initiated by infection. This work not only addresses a key component of end-organ physiology, but also raises questions about the side effects of biologics in the treatment of inflammatory diseases. KEY MESSAGES: • Hepatocytes develop Warburg-like metabolism in vivo during viral infection. • Macrophage TNFα promotes expression of glycolytic enzymes in hepatocytes. • Blocking this immune-metabolic axis abrogates Warburg-like metabolism in the liver. • Implications for patients being treated for inflammatory diseases with biologics.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Productos Biológicos/farmacología , Línea Celular Tumoral , Hepatocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA