Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Inform ; 118: 103791, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33915272

RESUMEN

Within the recent pandemic, scientists and clinicians are engaged in seeking new technology to stop or slow down the COVID-19 pandemic. The benefit of machine learning, as an essential aspect of artificial intelligence, on past epidemics offers a new line to tackle the novel Coronavirus outbreak. Accurate short-term forecasting of COVID-19 spread plays an essential role in improving the management of the overcrowding problem in hospitals and enables appropriate optimization of the available resources (i.e., materials and staff).This paper presents a comparative study of machine learning methods for COVID-19 transmission forecasting. We investigated the performances of deep learning methods, including the hybrid convolutional neural networks-Long short-term memory (LSTM-CNN), the hybrid gated recurrent unit-convolutional neural networks (GAN-GRU), GAN, CNN, LSTM, and Restricted Boltzmann Machine (RBM), as well as baseline machine learning methods, namely logistic regression (LR) and support vector regression (SVR). The employment of hybrid models (i.e., LSTM-CNN and GAN-GRU) is expected to eventually improve the forecasting accuracy of COVID-19 future trends. The performance of the investigated deep learning and machine learning models was tested using confirmed and recovered COVID-19 cases time-series data from seven impacted countries: Brazil, France, India, Mexico, Russia, Saudi Arabia, and the US. The results reveal that hybrid deep learning models can efficiently forecast COVID-19 cases. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models. Furthermore, results showed that LSTM-CNN achieved improved performances with an averaged mean absolute percentage error of 3.718%, among others.


Asunto(s)
COVID-19/transmisión , Aprendizaje Automático , Pandemias , Inteligencia Artificial , Brasil , Aprendizaje Profundo , Predicción , Francia , Humanos , India , México , Redes Neurales de la Computación , Federación de Rusia , Arabia Saudita , Estados Unidos
2.
Chaos Solitons Fractals ; 140: 110121, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32834633

RESUMEN

The novel coronavirus (COVID-19) has significantly spread over the world and comes up with new challenges to the research community. Although governments imposing numerous containment and social distancing measures, the need for the healthcare systems has dramatically increased and the effective management of infected patients becomes a challenging problem for hospitals. Thus, accurate short-term forecasting of the number of new contaminated and recovered cases is crucial for optimizing the available resources and arresting or slowing down the progression of such diseases. Recently, deep learning models demonstrated important improvements when handling time-series data in different applications. This paper presents a comparative study of five deep learning methods to forecast the number of new cases and recovered cases. Specifically, simple Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE) algorithms have been applied for global forecasting of COVID-19 cases based on a small volume of data. This study is based on daily confirmed and recovered cases collected from six countries namely Italy, Spain, France, China, USA, and Australia. Results demonstrate the promising potential of the deep learning model in forecasting COVID-19 cases and highlight the superior performance of the VAE compared to the other algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA