Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep ; 38(11): 110511, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294884

RESUMEN

An epithelial-to-mesenchymal transition (EMT) phenotype with cancer stem cell-like properties is a critical feature of aggressive/metastatic tumors, but the mechanism(s) that promote it and its relation to metabolic stress remain unknown. Here we show that Collapsin Response Mediator Protein 2A (CRMP2A) is unexpectedly and reversibly induced in cancer cells in response to multiple metabolic stresses, including low glucose and hypoxia, and inhibits EMT/stemness. Loss of CRMP2A, when metabolic stress decreases (e.g., around blood vessels in vivo) or by gene deletion, induces extensive microtubule remodeling, increased glutamine utilization toward pyrimidine synthesis, and an EMT/stemness phenotype with increased migration, chemoresistance, tumor initiation capacity/growth, and metastatic potential. In a cohort of 27 prostate cancer patients with biopsies from primary tumors and distant metastases, CRMP2A expression decreases in the metastatic versus primary tumors. CRMP2A is an endogenous molecular brake on cancer EMT/stemness and its loss increases the aggressiveness and metastatic potential of tumors.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias de la Próstata , Semaforina-3A , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Humanos , Masculino , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/patología , Semaforina-3A/metabolismo , Estrés Fisiológico
2.
Mol Cell ; 82(5): 1066-1077.e7, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245450

RESUMEN

The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.


Asunto(s)
Núcleo Celular , Complejo Piruvato Deshidrogenasa , Acetilcoenzima A/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Laminas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membrana Nuclear/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo
3.
J Am Heart Assoc ; 10(23): e020451, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34719264

RESUMEN

Background Isolated loss-of-function single nucleotide polymorphisms (SNPs) for SIRT3 (a mitochondrial deacetylase) and UCP2 (an atypical uncoupling protein enabling mitochondrial calcium entry) have been associated with both pulmonary arterial hypertension (PAH) and insulin resistance, but their collective role in animal models and patients is unknown. Methods and Results In a prospective cohort of patients with PAH (n=60), we measured SNPs for both SIRT3 and UCP2, along with several clinical features (including invasive hemodynamic data) and outcomes. We found SIRT3 and UCP2 SNPs often both in the same patient in a homozygous or heterozygous manner, correlating positively with PAH severity and associated with the presence of type 2 diabetes and 10-year outcomes (death and transplantation). To explore this mechanistically, we generated double knockout mice for Sirt3 and Ucp2 and found increasing severity of PAH (mean pulmonary artery pressure, right ventricular hypertrophy/dilatation and extensive vascular remodeling, including inflammatory plexogenic lesions, in a gene dose-dependent manner), along with insulin resistance, compared with wild-type mice. The suppressed mitochondrial function (decreased respiration, increased mitochondrial membrane potential) in the double knockout pulmonary artery smooth muscle cells was associated with apoptosis resistance and increased proliferation, compared with wild-type mice. Conclusions Our work supports the metabolic theory of PAH and shows that these mice exhibit spontaneous severe PAH (without environmental or chemical triggers) that mimics human PAH and may explain the findings in our patient cohort. Our study offers a new mouse model of PAH, with several features of human disease that are typically absent in other PAH mouse models.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polimorfismo de Nucleótido Simple , Hipertensión Arterial Pulmonar , Sirtuina 3 , Proteína Desacopladora 2 , Animales , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Humanos , Resistencia a la Insulina/genética , Ratones , Estudios Prospectivos , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/terapia , Índice de Severidad de la Enfermedad , Sirtuina 3/genética , Resultado del Tratamiento , Proteína Desacopladora 2/genética
4.
J Mol Med (Berl) ; 98(9): 1269-1278, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32725274

RESUMEN

The von Hippel-Lindau (VHL) protein binds and degrades hypoxia-inducible factors (HIF) hydroxylated by prolyl-hydroxylases under normoxia. Although originally described as a tumor suppressor, there is growing evidence that VHL may paradoxically promote tumor growth. The significance of its described interactions with many other proteins remains unclear. We found that VHL interacts with p53, preventing its tetramerization, promoter binding and expression of its target genes p21, PUMA, and Bax. VHL limited the decrease in proliferation and increase in apoptosis caused by p53 activation, independent of prolyl-hydroxylation and HIF activity, and its presence in tumors caused a resistance to p53-inducing chemotherapy in vivo. We propose that VHL has both anti-tumor function, via HIF degradation, and a new pro-tumor function via p53 target (p21, PUMA, Bax) inhibition. Because p53 plays a critical role in tumor biology, is activated by many chemotherapies, and because VHL levels vary among different tumors and its function can even be lost by mutations in some tumors, our results have important clinical applications. KEY MESSAGES: VHL and p53 physically interact and VHL inhibits p53 activity by limiting the formation of p53 tetramers. VHL attenuates the expression of p53 target genes in response to p53 stimuli. The inhibition of p53 by VHL is independent of HIF and prolyl-hydroxylation.


Asunto(s)
Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Susceptibilidad a Enfermedades , Humanos , Neoplasias/etiología , Neoplasias/patología , Unión Proteica , Multimerización de Proteína , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
5.
Trends Biochem Sci ; 41(8): 712-730, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27345518

RESUMEN

During evolution, cells acquired the ability to sense and adapt to varying environmental conditions, particularly in terms of fuel supply. Adaptation to fuel availability is crucial for major cell decisions and requires metabolic alterations and differential gene expression that are often epigenetically driven. A new mechanistic link between metabolic flux and regulation of gene expression is through moonlighting of metabolic enzymes in the nucleus. This facilitates delivery of membrane-impermeable or unstable metabolites to the nucleus, including key substrates for epigenetic mechanisms such as acetyl-CoA which is used in histone acetylation. This metabolism-epigenetics axis facilitates adaptation to a changing environment in normal (e.g., development, stem cell differentiation) and disease states (e.g., cancer), providing a potential novel therapeutic target.


Asunto(s)
Núcleo Celular/enzimología , Núcleo Celular/genética , Regulación de la Expresión Génica , L-Lactato Deshidrogenasa/metabolismo , Transcripción Genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...