Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33443101

RESUMEN

In plants and mammals, DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3), which is deposited by the polycomb repressive complex 2, are considered as two specialized systems for the epigenetic silencing of transposable element (TE) and genes, respectively. Nevertheless, many TE sequences acquire H3K27me3 when DNA methylation is lost. Here, we show in Arabidopsis thaliana that the gain of H3K27me3 observed at hundreds of TEs in the ddm1 mutant defective in the maintenance of DNA methylation, essentially depends on CURLY LEAF (CLF), one of two partially redundant H3K27 methyltransferases active in vegetative tissues. Surprisingly, the complete loss of H3K27me3 in ddm1 clf double mutant plants was not associated with further reactivation of TE expression nor with a burst of transposition. Instead, ddm1 clf plants exhibited less activated TEs, and a chromatin recompaction as well as hypermethylation of linker DNA compared with ddm1 Thus, a mutation in polycomb repressive complex 2 does not aggravate the molecular phenotypes linked to ddm1 but instead partially suppresses them, challenging our assumptions of the relationship between two conserved epigenetic silencing pathways.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29871888

RESUMEN

Mobilization of transposable elements (TEs) in plants has been recognized as a driving force of evolution and adaptation, in particular by providing genes with regulatory modules that impact their transcription. In this study, we employed an ATCOPIA93 long-terminal repeat (LTR) promoter-GUS fusion to show that this retrotransposon behaves like an immune-responsive gene during pathogen defense in Arabidopsis We also showed that the endogenous ATCOPIA93 copy "EVD", which is activated in the presence of bacterial stress, is negatively regulated by both DNA methylation and polycomb-mediated silencing, a mode of repression typically found at protein-coding and microRNA genes. Interestingly, an ATCOPIA93-derived soloLTR is located upstream of the disease resistance gene RPP4 and is devoid of DNA methylation and H3K27m3 marks. Through loss-of-function experiments, we demonstrate that this soloLTR is required for the proper expression of RPP4 during plant defense, thus linking the responsiveness of ATCOPIA93 to biotic stress and the co-option of its LTR for plant immunity.


Asunto(s)
Arabidopsis/genética , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Retroelementos , Proteínas de Arabidopsis/biosíntesis , Fusión Artificial Génica , Genes Reporteros , Glucuronidasa/análisis , Glucuronidasa/genética
3.
PLoS One ; 8(12): e82652, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376561

RESUMEN

RNA silencing is a natural defence mechanism against viruses in plants, and transgenes expressing viral RNA-derived sequences were previously shown to confer silencing-based enhanced resistance against the cognate virus in several species. However, RNA silencing was shown to dysfunction at low temperatures in several species, questioning the relevance of this strategy in perennial plants such as grapevines, which are often exposed to low temperatures during the winter season. Here, we show that inverted-repeat (IR) constructs trigger a highly efficient silencing reaction in all somatic tissues in grapevines. Similarly to other plant species, IR-derived siRNAs trigger production of secondary transitive siRNAs. However, and in sharp contrast to other species tested to date where RNA silencing is hindered at low temperature, this process remained active in grapevine cultivated at 4°C. Consistently, siRNA levels remained steady in grapevines cultivated between 26°C and 4°C, whereas they are severely decreased in Arabidopsis grown at 15°C and almost undetectable at 4°C. Altogether, these results demonstrate that RNA silencing operates in grapevine in a conserved manner but is resistant to far lower temperatures than ever described in other species.


Asunto(s)
Frío , Interferencia de ARN , Vitis/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , División Celular/genética , Proteínas Fluorescentes Verdes/metabolismo , Secuencias Invertidas Repetidas/genética , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/metabolismo , Transgenes/genética , Vitis/crecimiento & desarrollo
4.
PLoS One ; 7(4): e35173, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22545099

RESUMEN

BACKGROUND: Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome) is a master ubiquitin protein ligase (E3) that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA). This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2) of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed. CONCLUSIONS/SIGNIFICANCE: Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Interferencia de ARN , ARN de Planta/genética , Proteínas de Unión al ARN/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA