Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 233(2): 670-686, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34087005

RESUMEN

Heterogeneity has been observed in the responses of Arctic shrubs to climate variability over recent decades, which may reflect landscape-scale variability in belowground resources. At a northern fringe of tall shrub expansion (Yuribei, Yamal Peninsula, Russia), we sought to determine the mechanisms relating nitrogen (N) limitation to shrub growth over decadal time. We analysed the ratio of 15 N to 14 N isotopes in wood rings of 10 Salix lanata individuals (399 measurements) to reconstruct annual point-based bioavailable N between 1980 and 2013. We applied a model-fitting/model-selection approach with a suite of competing ecological models to assess the most-likely mechanisms that explain each shrub's individual time-series. Shrub δ15 N time-series indicated declining (seven shrubs), increasing (two shrubs) and no trend (one shrub) in N availability. The most appropriate model for all shrubs included N-dependent growth of linear rather than saturating form. Inclusion of plant-soil feedbacks better explained ring width and δ15 N for eight of 10 individuals. Although N trajectories were individualistic, common mechanisms of varying strength confirmed the N-dependency of shrub growth. The linear mechanism may reflect intense scavenging of scarce N; the importance of plant-soil feedbacks suggests that shrubs subvert the microbial bottleneck by actively controlling their environment.


Asunto(s)
Nitrógeno , Suelo , Regiones Árticas , Clima , Ecosistema , Plantas
2.
Proc Natl Acad Sci U S A ; 117(52): 33334-33344, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318214

RESUMEN

Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.


Asunto(s)
Cubierta de Hielo , Desarrollo de la Planta , Regiones Árticas , Clima , Humedad , Modelos Teóricos , Estaciones del Año , Suelo , Temperatura
3.
Nat Commun ; 11(1): 4621, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963240

RESUMEN

Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.


Asunto(s)
Ecosistema , Estaciones del Año , Tundra , Regiones Árticas , Cambio Climático , Monitoreo del Ambiente , Desarrollo de la Planta , Plantas , Suelo , Temperatura
4.
Biol Lett ; 12(11)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27852939

RESUMEN

Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Reno , Crianza de Animales Domésticos , Migración Animal , Animales , Regiones Árticas , Humanos , Lluvia , Siberia , Nieve , Tundra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...