Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 18(1): 247-254, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29257698

RESUMEN

In semiconductor quantum-wire heterostructures, interface roughness leads to exciton localization and to a radiative decay rate much smaller than that expected for structures with flat interfaces. Here, we uncover the electronic and optical properties of the one-dimensional extended defects that form at the intersection between stacking faults and inversion domain boundaries in GaN nanowires. We show that they act as crystal-phase quantum wires, a novel one-dimensional quantum system with atomically flat interfaces. These quantum wires efficiently capture excitons whose radiative decay gives rise to an optical doublet at 3.36 eV at 4.2 K. The binding energy of excitons confined in crystal-phase quantum wires is measured to be more than twice larger than that of the bulk. As a result of their unprecedented interface quality, these crystal-phase quantum wires constitute a model system for the study of one-dimensional excitons.

2.
Nano Lett ; 16(2): 973-80, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26675526

RESUMEN

The realization of semiconductor structures with stable excitons at room temperature is crucial for the development of excitonics and polaritonics. Quantum confinement has commonly been employed for enhancing excitonic effects in semiconductor heterostructures. Dielectric confinement, which gives rises to much stronger enhancement, has proven to be more difficult to achieve because of the rapid nonradiative surface/interface recombination in hybrid dielectric-semiconductor structures. Here, we demonstrate intense excitonic emission from bare GaN nanowires with diameters down to 6 nm. The large dielectric mismatch between the nanowires and vacuum greatly enhances the Coulomb interaction, with the thinnest nanowires showing the strongest dielectric confinement and the highest radiative efficiency at room temperature. In situ monitoring of the fabrication of these structures allows one to accurately control the degree of dielectric enhancement. These ultrathin nanowires may constitute the basis for the fabrication of advanced low-dimensional structures with an unprecedented degree of confinement.

3.
Nano Lett ; 15(3): 1930-7, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25671678

RESUMEN

We use line-of-sight quadrupole mass spectrometry to monitor the spontaneous formation of GaN nanowires on Si during molecular beam epitaxy. We find that the temporal evolution of nanowire ensembles is well described by a double logistic function. The analysis of the temporal evolution of nanowire ensembles, prepared under a wide variety of growth conditions, allows us to construct a growth diagram that can be used to predict the average delay time that precedes nanowire formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...