Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1958): 20211741, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34493082

RESUMEN

Loss of Arctic sea ice owing to climate change is predicted to reduce both genetic diversity and gene flow in ice-dependent species, with potentially negative consequences for their long-term viability. Here, we tested for the population-genetic impacts of reduced sea ice cover on the polar bear (Ursus maritimus) sampled across two decades (1995-2016) from the Svalbard Archipelago, Norway, an area that is affected by rapid sea ice loss in the Arctic Barents Sea. We analysed genetic variation at 22 microsatellite loci for 626 polar bears from four sampling areas within the archipelago. Our results revealed a 3-10% loss of genetic diversity across the study period, accompanied by a near 200% increase in genetic differentiation across regions. These effects may best be explained by a decrease in gene flow caused by habitat fragmentation owing to the loss of sea ice coverage, resulting in increased inbreeding of local polar bears within the focal sampling areas in the Svalbard Archipelago. This study illustrates the importance of genetic monitoring for developing adaptive management strategies for polar bears and other ice-dependent species.


Asunto(s)
Cubierta de Hielo , Ursidae , Animales , Regiones Árticas , Cambio Climático , Ecosistema , Ursidae/genética
2.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31953334

RESUMEN

In Norway, the use of quinolones in livestock populations is very low, and prophylactic use is prohibited. Despite this, quinolone-resistant Escherichia coli (QREC) isolates are present at low levels in several animal species. The source of these QREC isolates is unknown. The aim of this study was to characterize and compare QREC isolates from different animal species to identify putative factors that may promote the occurrence of QREC. A total of 280 QREC isolates, from broilers, pigs, red foxes, and wild birds, were whole-genome sequenced and analyzed. Well-known chromosomal and plasmid-mediated resistance mechanisms were identified. In addition, mutations in marR, marA, and rpoB causing novel amino acid substitutions in their respective proteins were detected. Phylogenetic analyses were used to determine the relationships between the isolates. Quinolone resistance mechanism patterns appeared to follow sequence type groups. Similar QREC isolates with similar resistance mechanism patterns were detected from the samples, and further phylogenetic analysis indicated close evolutionary relationships between specific isolates from different sources. This suggests the dissemination of highly similar QREC isolates between animal species and also the persistence of QREC strains within the broiler production chain. This highlights the importance of both control measures at the top of the production chain as well as biosecurity measures to avoid the further dissemination and persistence of QREC in these environments.IMPORTANCE Since antimicrobial usage is low in Norwegian animal husbandry, Norway is an ideal country to study antimicrobial resistance in the absence of selective pressure from antimicrobial usage. In particular, the usage of quinolones is very low, which makes it possible to investigate the spread and development of quinolone resistance in natural environments. Comparison of quinolone-resistant E. coli (QREC) isolates from livestock and wild animals in light of this low quinolone usage provides new insights into the development and dissemination of QREC in both natural and production environments. With this information, preventive measures may be taken to prevent further dissemination within Norwegian livestock and between other animals, thus maintaining the favorable situation in Norway.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli/veterinaria , Escherichia coli/fisiología , Enfermedades de las Aves de Corral/microbiología , Quinolonas/farmacología , Enfermedades de los Porcinos/microbiología , Crianza de Animales Domésticos , Animales , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Vivienda para Animales , Noruega , Sus scrofa , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA