Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 25(6): e202400184, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488206

RESUMEN

The front cover artwork is provided by Dr habil. Izabella Jastrzebska's group from the University of Bialystok, Poland. The image shows a polymeric network with molecular rotors (MR) as crosslinks. The MR rotation is slowed or inhibited when a molecule of stored gas is placed inside the polymer material. Read the full text of the Research Article at 10.1002/cphc.202300793.

2.
Chemphyschem ; 25(6): e202300793, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38259120

RESUMEN

In this paper, we report a new generation of polymeric networks as potential functional material based on changes in molecular dynamics in the solid state. The material is obtained by free radical polymerization of a diacrylate derivative bearing a steroid (stator) and a 1,4-diethynyl-phenylene-d4 fragment (rotator). Polymer research using the PALS technique complements the knowledge about nanostructural changes occurring in the system in the temperature range -115 °C - +190 °C. It indicates the presence of two types of free nanovolumes in the system and the occurrence of phase transitions. The polymer is characterized using 1 H NMR, 2 H Solid Echo NMR, ATR-FTIR and Raman spectroscopies, thermal analysis, and porosimetry. It is proved that the applied procedure leads to the formation of a novel porous organic material containing multiple molecular rotors.

3.
J Phys Chem B ; 127(46): 9887-9890, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37946359

RESUMEN

Various concentrations (8-300 mmol/L) of NaCl, KCl, and NaCl + KCl aqueous solutions were investigated using positron annihilation lifetime spectroscopy (PALS). A strong dependence of the o-Ps intensity as a function of the solution concentration was demonstrated. On this basis, the mean positron lifetime and the sum of counts in a selected time interval were proposed as reliable parameters for detecting disturbances in the ion balance of living organisms. The use of these parameters for differentiating healthy and cancerous tissues allows for the development of auxiliary diagnostic methods in a new generation of PET scanners equipped with a PALS detection module.


Asunto(s)
Electrones , Cloruro de Sodio , Análisis Espectral/métodos , Tomografía de Emisión de Positrones , Electrólitos
4.
Materials (Basel) ; 16(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770101

RESUMEN

Water is the most important life-giving resource on earth. Nowadays, intensive growth of the world population has resulted in increased water consumption and the production of wastewater. Additionally, the presence of pharmaceuticals in treated conventional wastewater or even in the environment is strictly indicating that present techniques of wastewater treatment are not efficient enough and are not designed to remove such pollutants. Scarce water resources in the world are the main driving force for the innovation of novel techniques of water and wastewater treatment. Photocatalysis, as one of the advanced oxidation processes, enables the transformation of recalcitrant and toxic pollutants into CO2, water, and inorganic salts. In the present paper, the photocatalytic oxidation of ß-blockers-metoprolol and propranolol-are described. For photocatalytic oxidation, novel TiO2 photocatalysts modified with biochar were used. Photocatalysts were prepared by sol-gel method and the effect of photocatalysts type, presence of inorganic ions, dissolved organic matter, and different water matrix was established. The results indicate that using only the decrease in the tested pollutant concentration is not effective enough in establishing the treatment method's safety. There is a need to use additional testing such as ecotoxicity tests; however, the key parameter is the properly chosen tested organism.

5.
Materials (Basel) ; 15(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36233949

RESUMEN

The investigated polymeric matrixes consisted of epoxidized linseed oil (ELO), acrylated epoxidized soybean oil (AESO), trimethylolpropane triglycidyl ether (RD1), vanillin dimethacrylate (VDM), triarylsulfonium hexafluorophosphate salts (PI), and 2,2-dimethoxy-2-phenylacetophenone (DMPA). Linseed oil-based (ELO/PI, ELO/10RD1/PI) and soybean oil-based (AESO/VDM, AESO/VDM/DMPA) polymers were obtained by cationic and radical photopolymerization reactions, respectively. In order to improve the cross-linking density of the resulting polymers, 10 mol.% of RD1 was used as a reactive diluent in the cationic photopolymerization of ELO. In parallel, VDM was used as a plasticizer in AESO radical photopolymerization reactions. Positron annihilation lifetime spectroscopy (PALS) was used to characterize vegetable oil-based UV-cured polymers regarding their structural stability in a wide range of temperatures (120-320 K) and humidity. The polymers were used as laccase immobilization matrixes for the construction of amperometric biosensors. A direct dependence of the main operational parameters of the biosensors and microscopical characteristics of polymer matrixes (mostly on the size of free volumes and water content) was established. The biosensors are intended for the detection of trace water pollution with xenobiotics, carcinogenic substances with a very negative impact on human health. These findings will allow better predictions for novel polymers as immobilization matrixes for biosensing or biotechnology applications.

6.
Materials (Basel) ; 15(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35057182

RESUMEN

A combined study of one of the simplest aromatic hydrocarbons, i.e., methylbenzene (toluene) (TOL), via the annihilation of an ortho-positronium (o-Ps) probe via positron annihilation lifetime spectroscopy (PALS) and the rotation dynamics of nitroxide spin probe 2,2,6,6-tetramethyl-piperidinyl-1-oxy (TEMPO) using electron spin resonance (ESR) over a wide temperature range, 10-300 K, is reported. The o-Ps lifetime, τ3, and the relative o-Ps intensity, I3, as a function of temperature exhibit changes defining several characteristic PALS temperatures in the slowly and rapidly cooled samples. Similarly, the spectral parameter of TEMPO mobility in TOL, 2Azz', and its correlation time, τc, reveal several effects at a set of the characteristic ESR temperatures, which were determined and compared with the PALS results. Finally, the physical origins of the changes in free volume expansion and spin probe mobility are revealed. They are reflected in a series of the mutual coincidences between the characteristic PALS and ESR temperatures and appropriate complementary thermodynamic and dynamic techniques.

7.
Mater Sci Eng C Mater Biol Appl ; 109: 110570, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228922

RESUMEN

In this study, we describe the fabrication of sensitive biosensor for the detection of phenolic substrates using laccase immobilized onto two types of microporous carbon fibers (CFs). The main characteristics of microporous CFs used for preparation of biosensors are given. Two CFs were characterized by different specific surface area, CFA (<1 m2·g-1) and CFB (1448 m2·g-1), but with comparable size of the micropores estimated by positron annihilation lifetime spectroscopy. The structural analysis was shown that CFA is formed by thin interwoven fibers forming a highly porous structure, as well as CFB - by granular formations with uneven edges that shape a cellulose membrane of lower porosity. The results of amperometric analysis revealed that the laccase-bound CFs possesses better electrochemical behavior for laccase than non-modified rod carbon electrodes (control). Using chronoamperometric analysis, the operational parameters of the CFs-modified bioelectrodes were compared to control bioelectrodes. The bioelectrodes based on CFs have demonstrated 2.4-2.7 folds enhanced maximal current at substrate saturation (Imax) values, 1.2-1.4 folds increased sensitivity and twice wide linearity compared with control bioelectrodes. The sensitivity of the developed CFs-based bioelectrodes was improved compared with the laccase-bound electrodes, described in literature. The developed biosensor was tested for catechol analysis in the real communal wastewater sample.


Asunto(s)
Técnicas Biosensibles , Carbono/química , Catecoles/análisis , Técnicas Electroquímicas , Proteínas Fúngicas/química , Lacasa/química , Polyporaceae/enzimología , Aguas Residuales/análisis
8.
J Colloid Interface Sci ; 558: 259-268, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31593859

RESUMEN

HYPOTHESIS: The negative pressure in liquids under the concave meniscus of nanometer size can be observed experimentally. This allows verification of the predictions of the macroscopic Young-Laplace law, which has so far been performed only on the basis of theoretical calculations. The deviation of the negative pressure from the Young-Laplace law allows to get information about the structure of the porous matrix. EXPERIMENTS: The properties of n-heptane confined in nanometer-sized spaces are monitored in situ due to the particular ability of positronium to form subnanometer bubbles in liquids. Positron annihilation lifetime spectroscopy allows to detect their sizes, which in turn are used to determine surface tension and negative pressure of the investigated liquid. These results are obtained by means of an improved quantum-mechanical model approximating the o-Ps bubble with a 1.3 eV finite potential well. FINDINGS: The dependence of the negative pressure on the curvature of the concave meniscus is found, which follows the Young-Laplace law with a good accuracy for model cylindrical pores. The differences between the pressure in the liquid confined in pores of various sizes and shapes in different materials allow inference about several phenomena (e.g. pore blocking in materials with a complex pore structure or swelling of the polymer).

9.
PLoS One ; 12(11): e0186728, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176834

RESUMEN

A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.


Asunto(s)
Benzoxazoles/química , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Conteo por Cintilación/instrumentación , Estirenos/química , Tomografía , Luz , Peso Molecular , Polimerizacion , Espectrometría de Fluorescencia , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...