Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small ; 20(3): e2304237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679096

RESUMEN

Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.

2.
J Alzheimers Dis ; 94(4): 1265-1301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424469

RESUMEN

Alzheimer's disease (AD), the most common cause of dementia, is a chronic neurodegenerative disease induced by multiple factors. The high incidence and the aging of the global population make it a growing global health concern with huge implications for individuals and society. The clinical manifestations are progressive cognitive dysfunction and lack of behavioral ability, which not only seriously affect the health and quality of life of the elderly, but also bring a heavy burden to the family and society. Unfortunately, almost all the drugs targeting the classical pathogenesis have not achieved satisfactory clinical effects in the past two decades. Therefore, the present review provides more novel ideas on the complex pathophysiological mechanisms of AD, including classical pathogenesis and a variety of possible pathogenesis that have been proposed in recent years. It will be helpful to find out the key target and the effect pathway of potential drugs and mechanisms for the prevention and treatment of AD. In addition, the common animal models in AD research are outlined and we examine their prospect for the future. Finally, Phase I, II, III, and IV randomized clinical trials or on the market of drugs for AD treatment were searched in online databases (Drug Bank Online 5.0, the U.S. National Library of Medicine, and Alzforum). Therefore, this review may also provide useful information in the research and development of new AD-based drugs.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Enfermedad de Alzheimer/patología , Calidad de Vida , Descubrimiento de Drogas , Modelos Animales
3.
Nutrients ; 15(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37049579

RESUMEN

The fluid intake and hydration status during pregnancy may influence the health outcomes of both the mother and the fetus. However, there are few studies related to this. The aim of the present study was to investigate fluid intake behaviors among pregnant women in their second trimester, to evaluate their hydration status and pregnancy complications, and to further explore the association of fluid intake and the amniotic fluid index (AFI). Participants' total fluid intake (TFI) levels were determined using a 7-day 24 h fluid intake questionnaire. The levels of water intake from food were not recorded or measured. Morning urine samples were collected, and both urine osmolality levels and urine specific gravity (USG) were tested to evaluate their hydration status. Fasting blood samples were also collected and measured for osmolality and complete blood count (CBC). A total of 324 participants completed the study. They were divided into four groups based on quartiles of TFI, including participants with lower (LFI1 and LFI2) and higher (HFI1 and HFI2) fluid intake levels. The median TFI was 1485 mL, and the median values of the four groups with different TFI levels were 1348, 1449, 1530, and 1609 mL, respectively. Only 3.4% of the participants attained the recommended value following an adequate water intake (1.7 L) level for pregnant women in China. Plain water was the main TFI resource (78.8~100.00%), and differences in the plain water intake levels among the four groups were evident (χ2 = 222.027, p < 0.05). The urine osmolality decreased sequentially with increasing TFI values from the LFI1 to HFI2 group, and significant differences in the urine osmolality levels among the four groups were evident (p < 0.05). Meanwhile, the percentage of dehydrated participants decreased from 26.8% in the LFI1 group to 0.0% in the HFI2 group (χ2 = 131.241, p < 0.05). Participants with higher TFI values had higher AFI values (χ2 = 58.386, all p < 0.05), and moderate-intensity correlations were found between TFI and urine osmolality, hydration status, and AFI (all p < 0.05). A large proportion of the participants had insufficient TFIs during the second trimester of pregnancy, and a proportion of the participants were dehydrated. The preliminary analysis showed that the AFI was correlated with the TFI during the second trimester of pregnancy. A sufficient TFI is necessary for pregnant women to improve their hydration status and may have effects on their health. The results can provide appropriate scientific references for the development of beneficial recommendations concerning adequate water intake levels for pregnant women in China.


Asunto(s)
Ingestión de Líquidos , Mujeres Embarazadas , Humanos , Femenino , Embarazo , Estudios Transversales , Segundo Trimestre del Embarazo , Concentración Osmolar , Líquido Amniótico , Deshidratación/orina
4.
ACS Appl Mater Interfaces ; 15(3): 4835-4844, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36642925

RESUMEN

Three-dimensional (3D) woven Ag nanowire (AgNW) grids have great potential for enhancing the mechanical stabilities, conductivity, and transmittance of flexible transparent electrodes (FTEs). However, it is a great challenge to control the formation of 3D woven AgNW grids on various substrates, especially the poly(dimethylsiloxane) (PDMS) substrate. This work presents a microtransfer-printing method for preparing a high-wettability poly(dimethylsiloxane) (PDMS) substrate to control the formation of 3D woven AgNW grids. The as-prepared PDMS substrate shows a high wettability performance. The surface structures of the PDMS substrate can control the sharp shrinkage of the ink membrane to give rise to a uniform liquid membrane evaporation behavior, which is the key factor for preparing a uniform 3D woven nanowire network. A thin uniform 3D woven AgNW network with a low sheet resistance of 24.3 Ω/□ and high transmittance of 92% was coated on the PDMS substrate. The networks directly coated the surface of the replicated PDMS, which simplified the peeling process and protected the networks from peeling strain and mechanical deformations. Moreover, the increment of resistance retained a small value (∼5%) when bending cycles reached 9,000. An alternating current electroluminescent (ACEL) device was prepared, and the uniform electroluminescence implies that a defect-free electrode has been fabricated. These results indicate that the as-prepared FTEs have excellent mechanical performance and great potential for flexible optoelectronic applications.

5.
Food Chem ; 410: 135361, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610085

RESUMEN

Tetrastigma hemsleyanum Diels et Gilg is a dietary supplement in southern China. The total flavonoids of T. hemsleyanum (THTF) can be used for gastrointestinal disease treatment. Colorectal cancer (CRC) is associated with gut microbiota dysbiosis. This study was designed to investigate the effect of THTF on CRC from gut microbiota and fecal metabolomics. THTF (120 mg/kg) oral gavage reduced tumor growth and protected intestinal function (p-p65/p65, ZO-1) in HCT116 xenografts. THTF increased probiotics Bifidobacteriales, Bifidobacteriaceae, Bifidobacterium, Bifidobacterium pseudolongum, and decreased "harmful" bacteria Bacteroidota, Firmicutes, Bacteroidia, Rikenellaceae, Odoribacter, Alistipes richness. Furthermore, THTF restored abnormal fecal metabolite levels. It showed a strong correlation among gut microbiota, metabolites, and tumor weight. Finally, THTF promoted Bifidobacterium pseudolongum growth in vitro, whose cell-free supernatant further inhibited HCT116 cell proliferation and clonogenicity. Together, THTF delays CRC tumor growth by maintaining microbiota homeostasis, restoring fecal metabolites, and protecting intestinal function.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Flavonoides , Bifidobacterium , Neoplasias Colorrectales/tratamiento farmacológico
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36499502

RESUMEN

Breast cancer (BC) is a common female malignancy, worldwide. BC death is predominantly caused by lung metastasis. According to previous studies, Dihydrotanshinone I (DHT), a bioactive compound in Salvia miltiorrhiza Bunge (S. miltiorrhiza), has inhibitory effects on numerous cancers. Here, we investigated the anti-metastatic effect of DHT on BC, where DHT more strongly inhibited the growth of BC cells (MDA-MB-231, 4T1, MCF-7, and SKBR-3) than breast epithelial cells (MCF-10a). Additionally, DHT repressed the wound healing, invasion, and migration activities of 4T1 cells. In the 4T1 spontaneous metastasis model, DHT (20 mg/kg) blocked metastasis progression and distribution in the lung tissue by 74.9%. DHT reversed the formation of neutrophil extracellular traps (NETs) induced by phorbol 12-myristate 13-acetate, as well as ameliorated NETs-induced metastasis. Furthermore, it inhibited Ly6G+Mpo+ neutrophils infiltration and H3Cit expression in the lung tissues. RNA sequencing, western blot, and bioinformatical analysis indicated that TIMP1 could modulate DHT acting on lung metastasis inhibition. The study demonstrated a novel suppression mechanism of DHT on NETs formation to inhibit BC metastasis.


Asunto(s)
Neoplasias de la Mama , Trampas Extracelulares , Neoplasias Pulmonares , Fenantrenos , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Fenantrenos/farmacología , Fenantrenos/metabolismo , Neoplasias Pulmonares/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Neutrófilos/metabolismo
7.
Phytother Res ; 36(11): 4263-4277, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35831026

RESUMEN

The dried root of Tetrastigma hemsleyanum Diels et Gilg is used as a traditional Chinese medicine in southern China, as a folk remedy for carcinomas and gastrointestinal diseases. The total flavonoids of T. hemsleyanum (THTF) provide its main bioactive constituents. However, the mechanisms underlying its potential activity on colorectal cancer are still unknown. Here, we investigated the antitumor effect of THTF on colorectal cancer in vitro and in vivo. It was found that THTF inhibited HCT-116 and HT-29 cell growth, with an IC50 of 105.60 and 140.80 µg/mL, respectively. THTF suppressed clonogenicity and promoted apoptosis in HCT-116. In vivo, THTF (120 mg/kg) delayed tumor growth in HCT-116 xenografts without influencing on body weight, organ pathology and indexes, and blood routine level. Mechanistically, THTF inhibited the expression of PI3K, AKT, and mTOR at the protein level and transcriptional levels. Molecular docking indicated eight compounds in THTF (kaempferol 3-rutinoside, rutinum, isoquercitrin, L-epicatechin, quercetin, astragalin, kaempferol 3-sambubioside, and catechin) strongly bound with amino acid sites of PI3K and mTOR proteins, indicating a high affinity. The results suggest that THTF delayed colorectal tumor growth by inhibiting the PI3K/AKT/mTOR pathway and might be a potential candidate for colorectal cancer prevention.


Asunto(s)
Neoplasias Colorrectales , Vitaceae , Humanos , Quempferoles , Flavonoides/farmacología , Flavonoides/química , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Vitaceae/química , Serina-Treonina Quinasas TOR , Transducción de Señal , Neoplasias Colorrectales/tratamiento farmacológico
8.
Front Pharmacol ; 13: 872085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600860

RESUMEN

Breast cancer is one of the most deadly malignancies in women worldwide. Salvia miltiorrhiza, a perennial plant that belongs to the genus Salvia, has long been used in the management of cardiovascular and cerebrovascular diseases. The main anti-breast cancer constituents in S. miltiorrhiza are liposoluble tanshinones including dihydrotanshinone I, tanshinone I, tanshinone IIA, and cryptotanshinone, and water-soluble phenolic acids represented by salvianolic acid A, salvianolic acid B, salvianolic acid C, and rosmarinic acid. These active components have potent efficacy on breast cancer in vitro and in vivo. The mechanisms mainly include induction of apoptosis, autophagy and cell cycle arrest, anti-metastasis, formation of cancer stem cells, and potentiation of antitumor immunity. This review summarized the main bioactive constituents of S. miltiorrhiza and their derivatives or nanoparticles that possess anti-breast cancer activity. Besides, the synergistic combination with other drugs and the underlying molecular mechanisms were also summarized to provide a reference for future research on S. miltiorrhiza for breast cancer treatment.

9.
Free Radic Biol Med ; 180: 220-235, 2022 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35074488

RESUMEN

Dihydrotanshinone I (DHT), a bioactive compound in Salvia miltiorrhiza, was reported to exhibit cytotoxicity against various malignancies. However, the underlying mechanism on ovarian cancer remains unclear. Here, DHT inhibited cell viability of ovarian cancer HO8910PM, SKOV3, A2780 and ES2 cells. It showed moderate inhibitory effect on ovarian epithelial IOSE80 cells and lower toxicity than chemotherapy drugs. DHT induced apoptosis and G2 cell cycle arrest accompanied by reduced expression of Bcl-2, Caspase-3, and increased Bax. Meanwhile, DHT increased ROS accumulation, decreased mitochondrial membrane potential and activated oxidative stress in HO8910PM and ES2 cells. Mechanistically, DHT inhibited Nrf2 and p62 expression, Nrf2 target genes and enzymes, and Nrf2 nuclear translocation, while increased the expression of Nrf2 inhibitor Keap1. NAC, a ROS scavenger, rescued DHT-induced proliferation inhibition, ROS generation and Nrf2 inhibition. DHT alleviated tBHQ-induced Nrf2 expression and increased its mRNA level. However, the proteasome inhibitor MG132 blocked DHT-induced Nrf2 inhibition, suggesting a post-translational regulation manner. DHT enhanced Nrf2 binding with Keap1, leading to potentiated Nrf2 ubiquitination degradation. Furthermore, Nrf2 and p62 overexpression blocked DHT-induced Nrf2 and p62 inhibition. Consistent with the in vitro results, DHT significantly delayed tumor growth in HO8910PM and ES2 xenograft nude mice, decreased tumor marker HE4 and CA125 levels, reversed the abnormally expressed proteins including Ki67, Nrf2, p62, Keap1, Bcl-2, CyclinB1, Cdc-2, and antioxidant enzymes SOD, CAT in vivo. Serum from DHT-treated mice also inhibited cell growth in vitro. Taken together, DHT exhibits anti-ovarian tumor effect by activating oxidative stress through ubiquitination-mediated Nrf2 degradation. Our findings implicate a potential application of DHT for ovarian cancer therapy.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias Ováricas , Animales , Línea Celular Tumoral , Femenino , Furanos , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Ratones Desnudos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Estrés Oxidativo , Fenantrenos , Quinonas , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Ubiquitinación
10.
Endocr Connect ; 10(9): 980-994, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34319906

RESUMEN

Insulin-like growth factor 1 (IGF1), also known as somatomedin C, is essential for the regulation of animal growth and development. In many species, the IGF1 gene can be alternatively spliced into multiple transcripts, encoding different pre-pro-IGF1 proteins. However, the exact alternative splicing patterns of IGF1 and the sequence information of different splice variants in sheep are still unclear. In this study, four splice variants (class 1-Ea, class 1-Eb, class 2-Ea, and class 2-Eb) were obtained, but no IGF1 Ec, similar to that found in other species, was discovered. Bioinformatics analysis showed that the four splice variants shared the same mature peptide (70 amino acids) and possessed distinct signal peptides and E peptides. Tissue expression analysis indicated that the four splice variants were broadly expressed in all tested tissues and were most abundantly expressed in the liver. In most tissues and stages, the expression of class 1-Ea was highest, and the expression of other splice variants was low. Overall, levels of the four IGF1 splice variants at the fetal and lamb stages were higher than those at the adult stage. Overexpression of the four splice variants significantly increased fibroblast proliferation and inhibited apoptosis (P < 0.05). In contrast, silencing IGF1 Ea or IGF1 Eb with siRNA significantly inhibited proliferation and promoted apoptosis (P < 0.05). Among the four splice variants, class 1-Ea had a more evident effect on cell proliferation and apoptosis. In summary, the four ovine IGF1 splice variants have different structures and expression patterns and might have different biological functions.

11.
Adv Sci (Weinh) ; 8(9): 2004222, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977063

RESUMEN

The importance of allopolyploidy in plant evolution has been widely recognized. The genetic changes triggered by allopolyploidy, however, are not yet fully understood due to inconsistent phenomena reported across diverse species. The construction of synthetic polyploids offers a controlled approach to systematically reveal genomic changes that occur during the process of polyploidy. This study reports the first fully sequenced synthetic allopolyploid constructed from a cross between Cucumis sativus and C. hystrix, with high-quality assembly. The two subgenomes are confidently partitioned and the C. sativus-originated subgenome predominates over the C. hystrix-originated subgenome, retaining more sequences and showing higher homeologous gene expression. Most of the genomic changes emerge immediately after interspecific hybridization. Analysis of a series of genome sequences from several generations (S0, S4-S13) of C. ×hytivus confirms that genomic changes occurred in the very first generations, subsequently slowing down as the process of diploidization is initiated. The duplicated genome of the allopolyploid with double genes from both parents broadens the genetic base of C. ×hytivus, resulting in enhanced phenotypic plasticity. This study provides novel insights into plant polyploid genome evolution and demonstrates a promising strategy for the development of a wide array of novel plant species and varieties through artificial polyploidization.


Asunto(s)
Cromosomas de las Plantas/genética , Cucumis/genética , Genoma de Planta/genética , Poliploidía , Secuenciación Completa del Genoma/métodos
12.
Genome ; 64(6): 627-638, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33460340

RESUMEN

Allopolyploids undergo "genomic shock" leading to significant genetic and epigenetic modifications. Previous studies have mainly focused on nuclear changes, while little is known about the inheritance and changes of organelle genome in allopolyploidization. The synthetic allotetraploid Cucumis ×hytivus, which is generated via hybridization between C. hystrix and C. sativus, is a useful model system for studying cytonuclear variation. Here, we report the chloroplast genome of allotetraploid C. ×hytivus and its diploid parents via sequencing and comparative analysis. The size of the obtained chloroplast genomes ranged from 154 673 to 155 760 bp, while their gene contents, gene orders, and GC contents were similar to each other. Comparative genome analysis supports chloroplast maternal inheritance. However, we identified 51 indels and 292 SNP genetic variants in the chloroplast genome of the allopolyploid C. ×hytivus relative to its female parent C. hystrix. Nine intergenic regions with rich variation were identified through comparative analysis of the chloroplast genomes within the subgenus Cucumis. The phylogenetic network based on the chloroplast genome sequences clarified the evolution and taxonomic position of the synthetic allotetraploid C. ×hytivus. The results of this study provide us with an insight into the changes of organelle genome after allopolyploidization, and a new understanding of the cytonuclear evolution.


Asunto(s)
Cloroplastos/genética , Cucumis/genética , Genoma del Cloroplasto/genética , Genoma de Planta , Composición de Base , Núcleo Celular , Cloroplastos/clasificación , ADN de Plantas/genética , Diploidia , Orden Génico , Hibridación Genética , Filogenia , Polimorfismo de Nucleótido Simple , Poliploidía , Secuenciación Completa del Genoma
13.
Genes (Basel) ; 11(12)2020 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322817

RESUMEN

Long non-coding RNAs (lncRNAs) play critical regulatory roles in various biological processes. However, the presence of lncRNAs and how they function in plant polyploidy are still largely unknown. Hence, we examined the profile of lncRNAs in a nascent allotetraploid Cucumis hytivus (S14), its diploid parents, and the F1 hybrid, to reveal the function of lncRNAs in plant-interspecific hybridization and whole genome duplication. Results showed that 2206 lncRNAs evenly transcribed from all 19 chromosomes were identified in C. hytivus, 44.6% of which were from intergenic regions. Based on the expression trend in allopolyploidization, we found that a high proportion of lncRNAs (94.6%) showed up-regulated expression to varying degrees following hybridization. However, few lncRNAs (33, 2.1%) were non-additively expressed after genome duplication, suggesting the significant effect of hybridization on lncRNAs, rather than genome duplication. Furthermore, 253 cis-regulated target genes were predicted for these differentially expressed lncRNAs in S14, which mainly participated in chloroplast biological regulation (e.g., chlorophyll synthesis and light harvesting system). Overall, this study provides new insight into the function of lncRNAs during the processes of hybridization and polyploidization in plant evolution.


Asunto(s)
Cromosomas de las Plantas , Cucumis , Genoma de Planta , Poliploidía , ARN Largo no Codificante , ARN de Planta , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Cucumis/genética , Cucumis/metabolismo , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN de Planta/biosíntesis , ARN de Planta/genética
14.
BMC Pregnancy Childbirth ; 20(1): 82, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32033597

RESUMEN

BACKGROUND: Water requirements increases with gestational age. Insufficient water intake causes dehydration, which may adversely affect maternal health and birth outcomes. However, few related studies have been conducted. The purposes are to assess the water intake and hydration state among pregnant women, and to investigate the associations with pregnancy complications and maternal and infant outcomes. METHODS: A prospective observational cohort study will be applied. A total of 380 pregnant women will be recruited from the First Affiliated Hospital of Hainan Medical University. Hydration biomarkers and health outcomes will be tested during 15~17 weeks' gestation, 20~22 weeks' gestation, 30~32 weeks' gestation, during childbirth and 42 days after childbirth. Daily fluid intake will be collected using a 24-h fluid intake record for 7 consecutive days. A semi-quantified food frequency method will be used to assess food intake and water intake from food. Anthropometric measurement will be taken following standardized processes. Intracellular fluid (ICF) and extracellular fluid (ECF) will be measured using a body composition analyzer. Morning fasting urine and blood osmolality will be tested by laboratory physicians using an osmotic pressure molar concentration meter. Pregnancy complications will be assessed and diagnosed throughout pregnancy and childbirth. Maternal-infant outcomes will be monitored using related indicators and technologies. In order to explore the internal mechanism and interactions from the perspective of endocrine, pregnancy related hormones (estradiol, prolactin, progesterone) and the hydration-related hormones (copeptin) will be tested during pregnancy. A mixed model of repeated measures ANOVA will be analyzed using SAS 9.2. RESULTS: The results may provide basic data on water intake among pregnant women. The association between hydration state and maternal-infant outcomes will also be explored. CONCLUSIONS: This preliminary exploratory study findings will fill the gaps in the research on water intake, hydration and maternal health, birth outcomes, provide scientific reference data for updating recommendation on water adequate intake among pregnant women, and provide suggestion for developing water intake interventions. TRIAL REGISTRATION: The protocol has been registered on the website of Chinese Clinical Trial Registry. The Identifier code is ChiCTR1800019284. The Registry date is 3 November, 2018. Registry name is "Study for the correlation between hydration state and pregnancy complications, maternal and infant outcomes during pregnancy".


Asunto(s)
Deshidratación/complicaciones , Ingestión de Líquidos/fisiología , Complicaciones del Embarazo/etiología , Trimestres del Embarazo/fisiología , Equilibrio Hidroelectrolítico/fisiología , Adulto , Biomarcadores/análisis , Deshidratación/fisiopatología , Femenino , Edad Gestacional , Humanos , Recién Nacido , Salud Materna , Estudios Observacionales como Asunto , Embarazo , Complicaciones del Embarazo/fisiopatología , Resultado del Embarazo , Estudios Prospectivos , Proyectos de Investigación , Adulto Joven
15.
Genes (Basel) ; 10(11)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671713

RESUMEN

Allopolyploids are often faced with the challenge of maintaining well-coordination between nuclear and cytoplasmic genes inherited from different species. The synthetic allotetraploid Cucumis × hytivus is a useful model to explore cytonuclear coevolution. In this study, the sequences and expression of cytonuclear enzyme complex RuBisCO as well as its content and activity in C. × hytivus were compared to its parents to explore plastid-nuclear coevolution. The plastome-coded rbcL gene sequence was confirmed to be stable maternal inheritance, and parental copy of nuclear rbcS genes were both preserved in C. × hytivus. Thus, the maternal plastid may interact with the biparentally inherited rbcS alleles. The expression of the rbcS gene of C-homoeologs (paternal) was significantly higher than that of H-homoeologs (maternal) in C. × hytivus (HHCC). Protein interaction prediction analysis showed that the rbcL protein has stronger binding affinity to the paternal copy of rbcS protein than that of maternal copy in C. × hytivus, which might explain the transcriptional bias of the rbcS homoeologs. Moreover, both the activity and content of RuBisCO in C. × hytivus showed mid-parent heterosis. In summary, our results indicate a paternal transcriptional bias of the rbcS genes in C. × hytivus, and we found new nuclear-cytoplasmic combination may be one of the reasons for allopolyploids heterosis.


Asunto(s)
Cucumis/genética , Poliploidía , Ribulosa-Bifosfato Carboxilasa/genética , Alelos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quimera/genética , Citoplasma/metabolismo , Citosol/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Plastidios/genética
16.
BMC Plant Biol ; 19(1): 471, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694540

RESUMEN

BACKGROUND: Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. RESULTS: In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. CONCLUSIONS: These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.


Asunto(s)
Cromosomas de las Plantas , Cucumis/genética , Meiosis/genética , Tetraploidía , Pintura Cromosómica , Hibridación Genética , Hibridación Fluorescente in Situ/métodos , Cariotipo , Translocación Genética
17.
Front Plant Sci ; 10: 591, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156664

RESUMEN

Heat stress has become a major threat to crop production due to global warming; however, the mechanisms underlying plant high-temperature sensing are not well known. In plants, the membrane-anchored receptor-like kinases (RLKs) relay environmental signals into the cytoplasm. In a previous study, we isolated a wall-associated RLK-like (WAKL) gene CaWAKL20 from pepper (Capsicum annuum L.). Here, the amino acid sequence of CaWAKL20 was characterized and found to consist of conserved domains of WAK/WAKL family, including an extracellular region containing a GUB-WAK binding domain and a degenerated EGF2-like domain; a transmembrane region; and an intercellular region with an STKc catalytic domain. Moreover, CaWAKL20 transcription was inhibited by heat stress, whereas it was induced by both ABA and H2O2 treatments. Silencing of CaWAKL20 enhanced pepper thermotolerance, while overexpression decreased Arabidopsis thermotolerance. Additionally, Arabidopsis lines overexpressing CaWAKL20 showed less sensitivity to ABA during seed germination and root growth. Finally, the survival rate of Arabidopsis seedlings under heat stress treatment was enhanced by ABA pre-treatment, while it was compromised by the overexpression of CaWAKL20. Furthermore, the heat-induced expression of several ABA-responsive genes and some key regulator genes for thermotolerance was decreased in Arabidopsis CaWAKL20-overexpression lines. These results suggest that CaWAKL20 negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes, laying a foundation for further investigation into the functional mechanisms of WAKs/WAKLs in plants undergoing environmental stresses.

18.
Front Plant Sci ; 8: 1122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28702041

RESUMEN

Adverse environmental conditions have a detrimental impact on crop growth and development, and cause protein denaturation or misfolding. The binding protein (BiP) plays an important protective role by alleviating endoplasmic reticulum (ER) stress induced by misfolded proteins. In this study, we characterized three BiP genes (CaBiP1, CaBiP2, and CaBiP3) in pepper, an economically important vegetable and spice species. The role of CaBiP1 in plant tolerance to ER stress and adverse environmental conditions (including heat, salinity, osmotic and drought stress) were investigated. All the expected functional and signaling domains were detected in three BiP proteins, but the motifs and exon-intron distribution differed slightly in CaBiP3. CaBiP1 and CaBiP2 were constitutively expressed in all the tested tissues under both normal and stressed conditions, whereas CaBiP3 was mainly expressed following stress. Silencing of CaBiP1 reduced pepper tolerance to ER stress and various environment stresses, and was accompanied by increased H2O2 accumulation, MDA content, relative electric leakage (REL), water loss rate, and a reduction in soluble protein content and relative water content (RWC) in the leaves. Conversely, overexpression of CaBiP1 in Arabidopsis enhanced tolerance to ER stress and multiple environment stresses, as demonstrated by an increase in germination rate, root length, survival rate, RWC, the unfolded protein response (UPR) pathway, and a decrease in water loss rate. Our results suggest that CaBiP1 may contribute to plant tolerance to abiotic stresses by reducing ROS accumulation, increasing the water-retention ability, and stimulating UPR pathways and expression of stress-related genes.

19.
Plant Sci ; 252: 246-256, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717461

RESUMEN

Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses.


Asunto(s)
Capsicum/genética , Proteínas HSP70 de Choque Térmico/fisiología , Respuesta al Choque Térmico/genética , Arabidopsis/genética , Capsicum/metabolismo , Capsicum/fisiología , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Familia de Multigenes , Filogenia , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Alineación de Secuencia
20.
Front Plant Sci ; 7: 131, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26904087

RESUMEN

Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...