Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Med ; 13(1): e6720, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111983

RESUMEN

BACKGROUND: Although adjuvant chemotherapy (ACT) is widely used to treat patients with Stage II/III colorectal cancer (CRC), administering ACT to specific patients remains a challenge. The decision to ACT requires an accurate assessment of recurrence risk and absolute treatment benefit. However, the traditional TNM staging system does not accurately assess a patient's individual risk of recurrence. METHODS: To identify recurrence risk-related genetic factors for Stage II/III CRC patients after radical surgery, we conducted an analysis of whole-exome sequencing of 47 patients with Stage II/III CRC who underwent radical surgery at five institutions. Patients were grouped into non-recurrence group (NR, n = 24, recurrence-free survival [RFS] > 5 years) and recurrence group (R, n = 23, RFS <2 years). The TCGA-COAD/READ cohort was employed as the validation dataset. RESULTS: A recurrence-predictive model (G8plus score) based on eight gene (CUL9, PCDHA12, HECTD3, DCX, SMARCA2, FAM193A, AATK, and SORCS2) mutations and tumor mutation burden/microsatellite instability (TMB/MSI) status was constructed, with 97.87% accuracy in our data and 100% negative predictive value in the TCGA-COAD/READ cohort. For the TCGA-COAD/READ cohort, the G8plus-high group had better RFS (HR = 0.22, p = 0.024); the G8plus-high tumors had significantly more infiltrated immune cell types, higher tertiary lymphoid structure signature scores, and higher immunological signature scores. The G8plus score was also a predict biomarker for immunotherapeutic in advanced CRC in the PUCH cohort. CONCLUSIONS: In conclusion, the G8plus score is a powerful biomarker for predicting the risk of recurrence in patients with stage II/III CRC. It can be used to stratify patients who benefit from ACT and immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Pronóstico , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Estadificación de Neoplasias , Biomarcadores de Tumor/genética
2.
Colorectal Dis ; 25(10): 2087-2092, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37612783

RESUMEN

AIM: The aim of this study was to investigate the efficacy of multiple perineal perforator flaps in repairing deep perineal defects after pelvic exenteration for locally advanced or recurrent rectal cancer. METHOD: We investigated the outcomes of eight patients whose repairs involved a novel method of using an internal pudendal artery perforator (IPAP) flap combined with an inferior gluteal artery perforator (IGAP) flap. RESULTS: There were four male and four female patients with a mean age of 56 years (36-72 years). Bilateral IPAP flaps combined with bilateral IGAP flaps were used in five patients, unilateral IPAP flaps combined with bilateral IGAP flaps were used in two patients and bilateral IPAP flaps were used in one patient. There were no functional limitations in daily activities during the 6-month follow-up period. CONCLUSION: Our study showed that using multiple perineal perforator flaps combined with lining repair is feasible for repairing deep perineal defects in patients who have undergone rectal cancer surgery that includes pelvic exenteration.


Asunto(s)
Exenteración Pélvica , Colgajo Perforante , Procedimientos de Cirugía Plástica , Neoplasias del Recto , Humanos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias del Recto/cirugía , Perineo/cirugía , Colgajo Perforante/cirugía
3.
J Transl Med ; 21(1): 63, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717891

RESUMEN

BACKGROUND: Circulating tumor DNA (ctDNA) detection following curative-intent surgery could directly reflect the presence of minimal residual disease, the ultimate cause of clinical recurrence. However, ctDNA is not postoperatively detected in ≥ 50% of patients with stage I-III colorectal cancer (CRC) who ultimately recur. Herein we sought to improve recurrence risk prediction by combining ctDNA with clinicopathological risk factors in stage I-III CRC. METHODS: Two independent cohorts, both consisting of early-stage CRC patients who underwent curative surgery, were included: (i) the discovery cohort (N = 124) with tumor tissues and postoperative plasmas for ctDNA determination; and (ii) the external validation cohort (N = 125) with available ctDNA results. In the discovery cohort, somatic variations in tumor tissues and plasmas were determined via a 733-gene and 127-gene next-generation sequencing panel, respectively. RESULTS: In the discovery cohort, 17 of 108 (15.7%) patients had detectable ctDNA. ctDNA-positive patients had a significantly high recurrence rate (76.5% vs. 16.5%, P < 0.001) and short recurrence-free survival (RFS; P < 0.001) versus ctDNA-negative patients. In addition to ctDNA status, the univariate Cox model identified pathologic stage, lymphovascular invasion, nerve invasion, and preoperative carcinoembryonic antigen level associated with RFS. We combined the ctDNA and clinicopathological risk factors (CTCP) to construct a model for recurrence prediction. A significantly higher recurrence rate (64.7% vs. 8.1%, P < 0.001) and worse RFS (P < 0.001) were seen in the high-risk patients classified by the CTCP model versus those in the low-risk patients. Receiver operating characteristic analysis demonstrated that the CTCP model outperformed ctDNA alone at recurrence prediction, which increased the sensitivity of 2 year RFS from 49.6% by ctDNA alone to 87.5%. Harrell's concordance index, calibration curve, and decision curve analysis also suggested that the CTCP model had good discrimination, consistency, and clinical utility. These results were reproduced in the validation cohort. CONCLUSION: Combining postoperative ctDNA and clinical risk may better predict recurrence than ctDNA alone for developing a personalized postoperative management strategy for CRC.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Colorrectales , Humanos , ADN Tumoral Circulante/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/patología , Biomarcadores de Tumor/genética , Curva ROC , Factores de Riesgo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología
4.
Microb Pathog ; 135: 103621, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31310831

RESUMEN

Astragalus polysaccharides (APS) are a traditional Chinese medicine with a therapeutic effect by enhancing immune function; however, the underlying functional mechanism is still unclear. The aim of the present study was to determine the effect of oral administration of APS on jejunum mucosal immunity in chickens vaccinated against Newcastle disease (ND). One-day-old Hy-Line male chickens were divided into five groups of 20 chicks each: three APS groups, one vaccinated control (VC) group and one non-vaccinated negative control (NC) group. On d 10, the APS groups were orally administered 0.5 mL of APS at doses of 1 mg/mL (APSL), 2 mg/mL (APSM) and 4 mg/mL (APSH) daily for 4 consecutive days. The chicks in the control groups were administered 0.5 mL saline for those 4 days. All groups except NC were administered a ND virus (NDV) vaccine on day 14. The jejunum was removed from 4 randomly selected chickens of each group at 1, 7, 14 and 28 days after vaccination. The jejunal villus height (VH) and crypt depth (CD) were measured and the VH:CD ratio calculated. Immunohistochemistry was used to analyze the differences of IgA+ cells in the jejunum. NDV specific secretory IgA (sIgA) levels in jejunal contents were detected using an indirect ELISA. At most time points, VH:CD ratios, number of IgA+ cells, and sIgA levels were significantly higher in the APS groups than those in VC and NC groups, but there were little differences among the three doses of APS groups. These results indicate that oral administration of APS could enhance the intestinal mucosal immune function of chickens, and APS could be used as a vaccine enhancer.


Asunto(s)
Planta del Astrágalo/química , Pollos/inmunología , Inmunidad Mucosa/efectos de los fármacos , Yeyuno/efectos de los fármacos , Enfermedad de Newcastle/inmunología , Polisacáridos/administración & dosificación , Vacunación/veterinaria , Administración Oral , Animales , Modelos Animales de Enfermedad , Inmunoglobulina A Secretora , Yeyuno/patología , Masculino , Medicina Tradicional China , Virus de la Enfermedad de Newcastle/inmunología , Extractos Vegetales/administración & dosificación
5.
Yi Chuan ; 38(2): 103-8, 2016 02.
Artículo en Chino | MEDLINE | ID: mdl-26907773

RESUMEN

Genomic imprinting is an epigenetic process that distinguishes parental alleles and results in specific expression of paternal and maternal genes. Imprints are acquired in the process of gametogenesis when genome-wide epigenetic reprogramming occurs and are maintained during early embryonic development. Therefore, the recognition and maintenance of imprints are very important in genome-wide reprogramming. In this review, we summarize the progresses of imprints removal in primordial germ cells (PGCs), imprints acquisition in parental PGCs, and imprints maintenance during early embryonic development. We also discuss the functional mechanisms of epigenetic factors which protect imprinted genes from whole genome DNA methylation.


Asunto(s)
Blastocisto/metabolismo , Epigénesis Genética , Impresión Genómica/genética , Células Germinativas/metabolismo , Blastocisto/citología , Desarrollo Embrionario/genética , Femenino , Gametogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...