Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1116277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051300

RESUMEN

Objective: This study aims to investigate the composition and function of the gut microbiome in long-term depression using an 8-week chronic unpredictable mild stress (CUMS) rat model. Materials and methods: Animals were sacrificed after either 4 weeks or 8 weeks under CUMS to mimic long-term depression in humans. The gut microbiome was analyzed to identify potential depression-related gut microbes, and the fecal metabolome was analyzed to detect their functional metabolites. The correlations between altered gut microbes and metabolites in the long-term depression rats were explored. The crucial metabolic pathways related to long-term depression were uncovered through enrichment analysis based on these gut microbes and metabolites. Results: The microbial composition of long-term depression (8-week CUMS) showed decreased species richness indices and different profiles compared with the control group and the 4-week CUMS group, characterized by disturbance of Alistipes indistinctus, Bacteroides ovatus, and Alistipes senegalensis at the species level. Additionally, long-term depression was associated with disturbances in fecal metabolomics. D-pinitol was the only increased metabolite in the 8-week CUMS group among the top 10 differential metabolites, while the top 3 decreased metabolites in the long-term depression rats included indoxyl sulfate, trimethylaminen-oxide, and 3 alpha,7 alpha-dihydroxy-12-oxocholanoic acid. The disordered fecal metabolomics in the long-term depression rats mainly involved the biosynthesis of pantothenate, CoA, valine, leucine and isoleucine. Conclusion: Our findings suggest that the gut microbiome may participate in the long-term development of depression, and the mechanism may be related to the regulation of gut metabolism.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Ratas , Animales , Depresión/metabolismo , Metabolómica , Metaboloma , Heces
2.
J Ethnopharmacol ; 313: 116481, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37072090

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The combined prescription of two classical decoctions (Ma-Xing-Shi-Gan decoction with Xiao-Chai-Hu decoction), named as San-Yang-He-Zhi (SYHZ) decoction, has been widely used for the treatment of influenza virus (IFV) infections for decades. AIM OF THE STUDY: This study aimed to evaluate the anti-influenza effect of SYHZ decoction and explore the underlying mechanism. MATERIALS AND METHODS: The ingredients of SYHZ decoction were analyzed by mass spectrometry. An animal model of IFV infection was established by challenging C57BL/6J mice with PR8 virus. Three groups of mice were infected with lethal or non-lethal doses of IFV, then followed by oral administration of phosphate-buffered saline (PBS), or SYHZ, or oseltamir; blank control mice (without IFV infection) were treated with PBS. Survival rate, Lung index, colon length, body weight loss and IFV viral load were measured 7 days post infection; histology and electron-microscopy examinations of lung tissue were performed; cytokine and chemokine levels in lung and serum were measured; and the intestinal metagenome, the cecum metabolome, and the lung transcriptome were analyzed. RESULTS: SYHZ treatment significantly improved survival rate compared with PBS (40% vs 0%); improved lung index, colon length, and body weight loss; and alleviated lung histological damage and viral load. SYHZ-treated mice had significantly lower levels of IL-1ß, TNF-α, IL-6, CCL2, CXCL10 in lung and serum, and increased levels of multiple bioactive components in cecum. Pro-inflammatory cytokines, Toll- and NOD-like receptors, pro-apoptosis molecules, and lung-injury-related proteins were downregulated in SYHZ mice, whereas surfactant protein and mucin were upregulated. The NOD-like receptor pathway, Toll-like receptor pathway, and NF-κB pathway were downregulated by SYHZ treatment. CONCLUSIONS: SYHZ decoction alleviated IFV infection in a mouse model. Multiple bioactive ingredients of SYHZ may inhibit replication of IFV and suppress excessive immune response.


Asunto(s)
Medicamentos Herbarios Chinos , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Ratones , Animales , Ratones Endogámicos C57BL , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Pulmón , Citocinas/metabolismo , Orthomyxoviridae/metabolismo , Replicación Viral , Pérdida de Peso
3.
Biomed Pharmacother ; 162: 114660, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058819

RESUMEN

Multidrug-resistance (MDR) Pseudomonas aeruginosa (P. aeruginosa) is a lethal gram-negative pathogen causing hospital-acquired and ventilator-associated pneumonia, which is difficult to treat. Our previous studies confirmed that baicalin, an essential bioactive component in Scutellaria baicalensis Georgi, exhibited anti-inflammatory effects in an acute pneumonia rat model induced by MDR P. aeruginosa. However, this effect of baicalin in constrast its low bioavailability, and its mechanism of action is still unknown. Thus, this study investigated whether the therapeutic effects of baicalin against MDR P. aeruginosa acute pneumonia are owing to the regulation of gut microbiota and their metabolites using pyrosequencing of the 16S rRNA genes in rat feces and metabolomics. As a result, baicalin attenuated the inflammation by acting directly on neutrophils and regulated the production of the inflammatory cytokines TNF-α, IL-1ß, IL-6, and IL-10. The mechanisms were through down-regulation of TLR4 and inhibition of NF-κB. Furthermore, pyrosequencing of the 16S rRNA genes in rat feces revealed that baicalin regulated the composition of gut microbial communities. At the genus level, baicalin efficiently increased the abundance of Ligilactobacillus, Lactobacillus and Bacteroides, but decreased the abundance of Muribaculaceae and Alistipes. Further, arginine biosynthesis was analyzed as the core pathway regulated by baicalin via combination with predicting gut microbiota function and targeted metabolomics. In conclusion, this study has demonstrated that baicalin relieved inflammatory injury in acute pneumonia rat induced by MDR P. aeruginosa via arginine biosynthesis associated with gut microbiota. Baicalin could be a promising and effective adjunctive therapy for lung inflammation caused by MDR P. aeruginosa infection.


Asunto(s)
Neumonía , Pseudomonas aeruginosa , Ratas , Animales , ARN Ribosómico 16S , Inflamación/tratamiento farmacológico , Neumonía/tratamiento farmacológico , Flavonoides/farmacología , Arginina/farmacología
4.
Front Microbiol ; 13: 898938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783377

RESUMEN

Cat8 is an important transcription factor regulating the utilization of non-fermentative carbon sources in Saccharomyces cerevisiae. However, our previous studies found that Cat8 may play a critical role in nitrogen metabolism, but the regulatory mechanism has not been elucidated. In this study, the nuclear localization and analysis of regulatory activity showed that the Cat8 function relies on Snf1 kinase. In the fermentation with glucose or glycerol as carbon sources under phenylalanine (Phe) induction, by comparing the changes of cellular gene expression and Cat8 target gene binding profiles after Cat8 overexpression, enhanced transcription was shown among key genes involved in the Ehrlich pathway (e.g., ARO9, ARO10, and ADH2) and its upstream and downstream related factors (e.g., GAP1, AGP1, GAT1, PDR12, and ESPB6), indicating that Cat8 participated in the regulation of nitrogen metabolism. Moreover, highly active Cat8 interacts with transcriptional activator Aro80 and GATA activator Gat1 coordinately to regulate the transcription of ARO10. Altogether, our results showed that Cat8 may act as a global transcription factor in response to nutritional changes, regulating both carbon and nitrogen utilization. This provides a new insight for us to explore the regulation of cell nutrient metabolism networks in yeast.

5.
Front Pharmacol ; 12: 701886, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737697

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, in the pathogenesis of which oxidative stress (OS) was believed to play a key role. Shenqi Fuzheng Injection (SFI) concocted from two kinds of Chinese medicinal herbs, Radix Codonopsis and Radix Astragali, was proven to be eligible to reduce the OS injury and increase the activity of the nuclear factor-erythroid-2-related factor 2 (Nrf2) pathway, an antioxidant enzymes inducer. Objective: We aim to investigate the effects and potential mechanisms underlying the action of SFI on a well-established transgenic mouse model of ALS. Methods: Transgenic SOD1-G93A mice were intraperitoneally injected with SFI (40 ml/kg) three times a week from 87 days of age. Motor function, survival, pathological manifestations in the brain, and Nrf2 pathway-related assessments of the mice were performed. Results: SFI treatment efficiently postponed the disease onset (p = 0.022) and extended the overall survival (p = 0.038) of the SOD1-G93A mice. Moreover, SFI significantly reduced motor neuron loss (p < 0.001) and astrocytic activation (p < 0.05) in the motor cortex of the brain of SOD1-G93A mice at 130 days of age. The protective effects of SFI in the SOD1-G93A mice were associated with decreasing the level of malondialdehyde (p < 0.05) and increasing the levels of superoxide dismutase (p < 0.05), Nrf2 (p < 0.05), heme oxygenase-1 (p < 0.05), and glutathione S-transferase (p < 0.05) in the SOD1-G93A mice. Conclusion: The SFI treatment efficiently extended the overall survival and improved the pathological manifestations of the brain via alleviating the OS injury and activating the Nrf2 pathway in the animal model of ALS, which made SFI a potentially promising candidate for ALS treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...