Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(34): 23684-23701, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39158142

RESUMEN

The nanodrug delivery system-based nasal spray (NDDS-NS) can bypass the blood-brain barrier and deliver drugs directly to the brain, offering unparalleled advantages in the treatment of central nervous system (CNS) diseases. However, the current design of NNDS-NS is excessively focused on mucosal absorption while neglecting the impact of nasal deposition on nose-to-brain drug delivery, resulting in an unsatisfactory nose-to-brain delivery efficiency. In this study, the effect of the dispersion medium viscosity on nasal drug deposition and nose-to-brain delivery in NDDS-NS was elucidated. The optimized formulation F5 (39.36 mPa·s) demonstrated significantly higher olfactory deposition fraction (ODF) of 23.58%, and a strong correlation between ODF and intracerebral drug delivery (R2 = 0.7755) was observed. Building upon this understanding, a borneol-modified lipid nanoparticle nasal spray (BLNP-NS) that combined both nasal deposition and mucosal absorption was designed for efficient nose-to-brain delivery. BLNP-NS exhibited an accelerated onset of action and enhanced brain targeting efficiency, which could be attributed to borneol modification facilitating the opening of tight junction channels. Furthermore, BLNP-NS showed superiority in a chronic migraine rat model. It not only provided rapid relief of migraine symptoms but also reversed neuroinflammation-induced hyperalgesia. The results revealed that borneol modification could induce the polarization of microglia, regulate the neuroinflammatory microenvironment, and repair the neuronal damage caused by neuroinflammation. This study highlights the impact of dispersion medium viscosity on the nose-to-brain delivery process of NDDS-NS and serves as a bridge between the formulation development and clinical transformation of NDDS-NS for the treatment of CNS diseases.


Asunto(s)
Encéfalo , Canfanos , Lípidos , Nanopartículas , Rociadores Nasales , Ratas Sprague-Dawley , Animales , Nanopartículas/química , Ratas , Lípidos/química , Encéfalo/metabolismo , Canfanos/química , Canfanos/administración & dosificación , Canfanos/farmacología , Masculino , Administración Intranasal , Sistemas de Liberación de Medicamentos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Mucosa Nasal/metabolismo , Mucosa Nasal/efectos de los fármacos , Tamaño de la Partícula
2.
Int J Pharm ; 652: 123809, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38224760

RESUMEN

Alzheimer's disease (AD) is characterized by a gradual decline in cognitive function and memory impairment, significantly impacting the daily lives of patients. Rivastigmine (RHT), a cholinesterase inhibitor, is used to treat mild to moderate AD via oral administration. However, oral administration is associated with slow absorption rate and severe systemic side effects. RHT nasal spray (RHT-ns), as a nose-to-brain delivery system, is more promising for AD management due to its efficient brain delivery and reduced peripheral exposure. This study constructed RHT-ns for enhancing AD treatment efficacy, and meanwhile the correlation between drug olfactory deposition and drug entering into the brain was explored. A 3D-printed nasal cast was employed to quantify the drug olfactory deposition. Brain delivery of RHT-ns was quantified using fluorescence tracking and Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) analysis, which showed a good correlation to the olfactory deposition. F2 (containing 1% (w/v) viscosity modifier Avicel® RC-591) with high olfactory deposition and drug brain delivery was further investigated for pharmacodynamics study. F2 exhibited superiority in AD treatment over the commercially available oral formulation. In summary, the present study showed the successful development of RHT-ns with improved olfactory deposition and enhanced brain delivery. It might provide new insight into the design and development of nose-to-brain systems for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Rivastigmina/química , Rivastigmina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Rociadores Nasales , Administración Intranasal , Encéfalo , Inhibidores de la Colinesterasa
3.
Sci Bull (Beijing) ; 68(24): 3225-3239, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37973467

RESUMEN

Pulmonary infections caused by multidrug-resistant bacteria have become a significant threat to human health. Bacterial biofilms exacerbate the persistence and recurrence of pulmonary infections, hindering the accessibility and effectiveness of antibiotics. In this study, a dry powder inhalation (DPI) consisting of polymyxin B sulfate (PMBS) inhalable microparticles and high-lectin-affinity (HLA) sugar (i.e., raffinose) carriers was developed for treating pulmonary infections and targeting bacterial lectins essential for biofilm growth. The formulated PMBS-HLA DPIs exhibited particle sizes of approximately 3 µm, and surface roughness varied according to the drug-to-carrier ratio. Formulation F5 (PMBS: raffinose = 10:90) demonstrated the highest fine particle fraction (FPF) value (64.86%), signifying its substantially enhanced aerosol performance, potentially attributable to moderate roughness and smallest mass median aerodynamic particle size. The efficacy of PMBS-HLA DPIs in inhibiting biofilm formation and eradicating mature biofilms was significantly improved with the addition of raffinose, suggesting the effectiveness of lectin-binding strategy for combating bacterial biofilm-associated infections. In rat models with acute and chronic pulmonary infections, F5 demonstrated superior bacterial killing and amelioration of inflammatory responses compared to spray-dried PMBS (F0). In conclusion, our HLA carrier-based formulation presents considerable potential for the efficient treatment of multidrug-resistant bacterial biofilm-associated pulmonary infections.


Asunto(s)
Polimixina B , Azúcares , Ratas , Humanos , Animales , Polimixina B/farmacología , Rafinosa , Carbohidratos , Portadores de Fármacos , Biopelículas , Lectinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA