Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1415191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148942

RESUMEN

Background: Drug resistance is common in triple-negative breast cancer (TNBC) therapy. To identify a method to overcome chemotherapy resistance in TNBC cells, an siRNA targeting the AXL gene (siAXL), which can overcome drug resistance, was used in this study. A nanodelivery system was constructed to co-deliver siAXL and paclitaxel (PTX). Methods: A biodegradable and tumor microenvironment (TME)-sensitive mPEG-coated dendritic polylysine material (PDPLL) was synthesized. This material was used to construct single-molecule nanoparticles to co-deliver PTX and siAXL. The drug encapsulation and morphological properties of the nanoparticles (NPs) were characterized. The sensitivity of the NPs to the TME was evaluated in vitro with a dialysis method. The tumor-targeting effect of the PDPLL NPs was evaluated by fluorescence imaging and drug distribution evaluation in vivo. The ability to overcome drug resistance was evaluated using PTX-resistant 4T1 cells (4T1/PTX cells) in both in vitro and in vivo models. Results: PDPLL NPs had a particle size of 49.6 ± 5.9 nm and a zeta potential of 7.87 ± 0.68 mV. The PTX drug loading (DL)% was 2.59%. The siAXL DL was 2.5 mg PDPLL: 10 nmol siAXL. The release of PTX showed sustained release performance. The release of siAXL showed sensitivity for the TME. The NPs were stable in the plasma. The NPs promoted cell uptake by PTX-resistant 4T1 cells (4T1/PTX) and promoted tumor targeting and permeability in vivo. siAXL enhanced the toxicity and apoptosis efficiency of PTX in 4T1/PTX cells, as well as the cycle arrest efficiency caused by PTX. The NPs improved the above effects. In mouse 4T1/PTX orthotopic tumors, the NPs enhanced the sensitization of PTX to siAXL. Conclusion: The PDPLL NP co-delivery system possesses good encapsulating potential not only for PTX but also for siRNA. It can enhance the tumor-targeting effect and overcome the drug resistance of 4T1/PTX both in vitro and in vivo. This system is a potential delivery system for RNAs.

2.
Front Oncol ; 14: 1361152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515566

RESUMEN

Background: Prostate cancer (PCa) is the second most common solid cancer among men worldwide and the fifth leading cause of cancer-related deaths in men. Sulforaphane (SFN), an isothiocyanate compound, has been shown to exert inhibitory effects on a variety of cancers. However, the biological function of SFN in PCa has not been fully elucidated. The objective of this study was conducted to further investigate the possible underlying mechanism of SFN in PCa using in vitro cell culture and in vivo tumor model experiments. Methods: Cell viability, migration, invasion, and apoptosis were analyzed by Cell Counting Kit-8 (CCK-8), wound healing assay, transwell assay, or flow cytometry. Expression of microRNA (miR)-3919 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) or in situ hybridization assay. Xenograft assay was conducted to validated the antitumor effect of miR-3919. The targeting relationship between miR-3919 and DJ-1 was verified by dual-luciferase reporter assay. The level of DJ-1was measured by qRT-PCR or western blotting (WB). Results: In the present study, SFN downregulated mRNA and protein expression of DJ-1, an oncogenic gene. Small RNA sequencing analysis and dual-luciferase reporter assay confirmed that microRNA (miR)-3919 directly targeted DJ-1 to inhibition its expression. Furthermore, miR-3919 overexpression impeded viability, migration, and invasion and promoted apoptosis of PCa cells. Tumor growth in nude mice was also inhibited by miR-3919 overexpression, and miR-3919 expression in PCa tissues was lower than that in peritumoral tissues in an in situ hybridization assay. Transfection with miR-3919 inhibitors partially reversed the effects of SFN on cell viability, migration, invasion, and apoptosis. Conclusion: Overall, the miR-3919/DJ-1 axis may be involved in the effects of SFN on the malignant biological behavior of PCa cells, which might be a new therapeutic target in PCa.

3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338822

RESUMEN

The hippocampal formation, particularly the CA2 subregion, is critical for social memory formation and memory processing, relying on synaptic plasticity-a fundamental mechanism by which synapses strengthen. Given the role of the ubiquitin-proteasome system (UPS) in various nervous system processes, including learning and memory, we were particularly interested in exploring the involvement of RING-type ubiquitin E3 ligases, such as UHRF2 (NIRF), in social behavior and synaptic plasticity. Our results revealed altered social behavior in mice with systemic Uhrf2 knockout, including changes in nest building, tube dominance, and the three-chamber social novelty test. In Uhrf2 knockout mice, the entorhinal cortex-CA2 circuit showed significant reductions in synaptic plasticity during paired-pulse facilitation and long-term potentiation, while the inability to evoke synaptic plasticity in the Schaffer-collateral CA2 synapses remained unaffected. These changes in synaptic plasticity correlated with significant changes in gene expression including genes related to vesicle trafficking and transcriptional regulation. The effects of Uhrf2 knockout on synaptic plasticity and the observed gene expression changes highlight UHRF2 as a regulator of learning and memory processes at both the cellular and systemic levels. Targeting E3 ubiquitin ligases, such as UHRF2, may hold therapeutic potential for memory-related disorders, warranting further investigation.


Asunto(s)
Hipocampo , Plasticidad Neuronal , Ubiquitina-Proteína Ligasas , Animales , Ratones , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Ratones Noqueados , Plasticidad Neuronal/genética , Conducta Social , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Med Virol ; 96(1): e29388, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38235845

RESUMEN

The use of precise epitope peptides as antigens is essential for accurate serological diagnosis of viral-infected individuals, but now it remains an unsolvable problem for mapping precise B cell epitopes (BCEs) recognized by human serum. To address this challenge, we propose a novel epitope delimitation (ED) method to uncover BCEs in the delineated human IgG-reactive (HR) antigenic peptides (APs). Specifically, the method based on the rationale of similarities in humoral immune responses between mammalian species consists of a pair of elements: experimentally delineated HR-AP and rabbit-recognized (RR) BCE motif and corresponding pair of sequence alignment analysis. As a result of using the ED approach, after decoding four RR-epitomes of human papillomavirus types 16/18-E6 and E7 proteins utilizing rabbit serum against each recombinant protein and sequence alignment analysis of HR-APs and RR-BCEs, 19 fine BCEs in 17 of 22 known HR-APs were defined based on each corresponding RR-BCE motifs, including the type-specificity of each delimited BCE in homologous proteins. The test with 22 known 16/20mer HR-APs demonstrated that the ED method is effective and efficient, indicating that it can be used as an alternative method to the conventional identification of fine BCEs using overlapping 8mer peptides.


Asunto(s)
Proteínas Oncogénicas Virales , Péptidos , Animales , Humanos , Conejos , Secuencia de Aminoácidos , Péptidos/genética , Epítopos de Linfocito B , Alineación de Secuencia , Inmunoglobulina G , Mapeo Epitopo/métodos , Mamíferos
5.
Front Cell Dev Biol ; 9: 666303, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631693

RESUMEN

The WNT signaling pathway plays a crucial role in oviduct/fallopian development. However, the specific physiological processes regulated by the WNT pathway in the fallopian/oviduct function remain obscure. Benefiting from the Lgr4 knockout mouse model, we report the regulation of oviduct epithelial secretion by LGR4. Specifically, the loss of Lgr4 altered the mouse oviduct size and weight, severely reduced the number of oviductal epithelial cells, and ultimately impaired the epithelial secretion. These alterations were mediated by a failure of CTNNB1 protein accumulation in the oviductal epithelial cytoplasm, by the modulation of WNT pathways, and subsequently by a profound change of the gene expression profile of epithelial cells. In addition, selective activation of the WNT pathway triggered the expression of steroidogenic genes, like Cyp11a1 and 3ß-Hsd1, through the activation of the transcriptional factor NR5A2 in an oviduct primary cell culture system. As demonstrated, the LGR4 protein modulates a WNT-NR5A2 signaling cascade facilitating epithelial secretory cell maturation and steroidogenesis to safeguard oviduct development and function in mice.

6.
PLoS One ; 12(10): e0186097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023483

RESUMEN

There is a need to develop better methods for epitope mapping and/or identification of antibody-recognizing motifs. Here, we describe improved biosynthetic peptide (BSP) method using a newly developed plasmid pXXGST-3 as vector, which has a viral E7 gene in the cloning sites of pXXGST-1. It is crucial to employ pXXGST-3 instead of pXXGST-1, since it makes use of the BSP method simpler and easier to perform, and more cost-effective for epitope mapping. These merits are embodied in two aspects: i) convenient recovery of double enzyme-digested product due to the existence of 315 bp inserted between BamH I and Sal I sites, and thus greatly reducing the production of self-ligation clones, and ii) no longer requiring control protein when screening recombinant (r-) clones expressing 8/18mer peptides by running polyacrylamide gel electrophoresis. The protocol involves the following core steps: (i) design of plus and minus strands of DNA fragments encoding overlapping 8/18mer peptides; (ii) chemical synthesis of the designed DNA fragments; (iii) development of r-clones using pXXGST-3 vector expressing each 8/18mer peptide fused with truncated GST188 protein; (iv) screening r-clones by running the cell pellets from each induced clone on SDS-PAGE gel followed by sequencing of inserted DNA fragments for each verified r-clone; and (v) Western blotting with either monoclonal antibodies or polyclonal antibodies. This improved GST188-BSP method provides a powerful alternative tool for epitope mapping.


Asunto(s)
Mapeo Epitopo/métodos , Glutatión Transferasa/metabolismo , Péptidos/metabolismo , Plásmidos/genética , Ingeniería de Proteínas/métodos , Animales , Anticuerpos Monoclonales/metabolismo , Mapeo Epitopo/economía , Glutatión Transferasa/genética , Inmunización , Masculino , Proteínas Oncogénicas Virales/genética , Péptidos/inmunología , Ingeniería de Proteínas/economía , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA