Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 960067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118316

RESUMEN

The world is rich in heavy oil resources, however, the recovery difficulty and cost are both higher than that of conventional crude oil. To date, the most common method of recovering heavy oil is steam flooding. However, once the steam breaks through the geological formation, gas channeling readily occurs, which leads to a rapid decrease of the steam drive efficiency. To improve the swept volume of steam in the geological formation, a series of hydrophobic silica particles for stabilizing foam was synthesized. This kind of particles used hydrophilic nano silica particles as reactant. Hydrophobic groups with cationic long carbon chains were grafted onto the surface of hydrophilic silica particles by synthetic silane quaternary ammonium salt. When the quantity of silane quaternary ammonium salt used in the modification reaction is different, the product had various degrees of wettability. The hydrophobic particles with the contact angle closest to 90° had the best foam stabilization effect on the betaine zwitterionic surfactant LAB. For LAB solution with mass fraction of 0.3%, the half-life of foam was extended into 160% when the mass fraction of particles was 0.5%. The higher the gas-liquid ratio, the better the plugging effect of foam agent with hydrophobic particles presented in porous media. The adsorption test of hydrophobic particles indicated that hydrophobic particles improved the stability of foam liquid membrane by improving the adsorption capacity of surfactant molecules. The thermal stability of hydrophobic silica particles exceeded 200°C, and the good foam stability made it a potential additive for foam oil displacement in high-temperature geological formation.

2.
BMC Genomics ; 23(1): 150, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189832

RESUMEN

BACKGROUND: Zinc finger homeodomain (ZHD) protein is a plant-specific transcription factor and a potential regulator of phosphoenolpyruvate carboxylase (PEPCase)-coding genes, and it also participates in plant growth regulation and abiotic stress responses. To study the function of MsZF-HD genes in the alkaline stress response, this paper assessed biological information and performed transcriptome analysis of the MsZF-HD gene family by using the genomes of two different varieties of alfalfa (XinJiangDa Ye and Zhongmu No. 1). RESULTS: In total, 49 and 11 MsZF-HD genes were identified in the two different varieties respectively, including the alleles of XinJiangDa Ye. According to their phylogenetic relationships, the 60 MsZF-HD genes were divided into 5 ZHD subfamilies and 1 MIF subfamily. A total of 88.3% of MsZF-HD genes do not contain introns and are unevenly distributed among the 6 chromosomes of alfalfa. A collinearity analysis indicated that 26 genes of XinJiangDa Ye have no orthologous genes in Zhongmu No. 1, although these genes (such as ZHD-X1-2, ZHD-X3-2 and ZHD-X4-2) have homologous genes in Arabidopsis thaliana, Medicago truncatula and Glycine max. Through RNA-seq and qRT-PCR verification, it was found that MsZF-HD genes are downregulated to participate in the alkaline stress response. CONCLUSION: The results of this study may lay the foundation for the cloning and functional study of MsZF-HD genes and provide a theoretical basis for revealing the difference between XinJiangDa Ye and Zhongmu No. 1 at the genome level.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , Genoma de Planta , Medicago sativa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
3.
Front Plant Sci ; 12: 702195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490005

RESUMEN

Rare cold-inducible 2/plasma membrane protein 3 (RCI2/PMP3) genes are ubiquitous in plants and belong to a multigene family whose members respond to a variety of abiotic stresses by regulating ion homeostasis and stabilizing membranes, thus preventing damage. In this study, the expression of MsRCI2A, MsRCI2B, and MsRCI2C under high-salinity, alkali and ABA treatments was analyzed. The results showed that the expression of MsRCI2A, MsRCI2B, and MsRCI2C in alfalfa (Medicago sativa L.) was induced by salt, alkali and ABA treatments, but there were differences between MsRCI2 gene expression under different treatments. We investigated the functional differences in the MsRCI2A, MsRCI2B, and MsRCI2C proteins in alfalfa (Medicago sativa L.) by generating transgenic alfalfa plants that ectopically expressed these MsRCI2s under the control of the CaMV35S promoter. The MsRCI2A/B/C-overexpressing plants exhibited different degrees of improved phenotypes under high-salinity stress (200 mmol.L-1 NaCl) and weak alkali stress (100 mmol.L-1 NaHCO3, pH 8.5). Salinity stress had a more significant impact on alfalfa than alkali stress. Overexpression of MsRCI2s in alfalfa caused the same physiological response to salt stress. However, in response to alkali stress, the three proteins encoded by MsRCI2s exhibited functional differences, which were determined not only by their different expression regulation but also by the differences in their regulatory relationship with MsRCI2s or H+-ATPase.

4.
Plant Physiol Biochem ; 154: 538-546, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32912487

RESUMEN

The sulfite reductase gene in Medicago sativa L. (MsSiR) encodes sulfite reductase (SiR) and catalyses the conversion of sulfite to sulfate in the sulfite assimilation pathway. In this study, we investigated the role of MsSiR in alfalfa by generating transgenic alfalfa that ectopically expressed MsSiR under the control of the CaMV35S promoter. The differences in alkali tolerance between the MsSiR-overexpressing and wild-type (WT) plants were analyzed, and the MsSiR-overexpressing plants exhibited an improved phenotype under alkali stress. Compared to WT plants, these plants demonstrated improved antioxidant activity as well as decreased H2O2 and O2- contents and increased glutathione reduced (GSH), Cysteine (Cys) and glutathione oxidized (GSSG) contents. MsSiR-overexpressing plants also exhibited high levels of adenosyl phosphosulfate reductases (APR), sulfite oxidase (SO) and MsSiR expression under alkali stress. It was speculated that MsSiR is involved in sulfur metabolism pathways, including the stabilization of sulfate and sulfite levels and the synthesis of GSH. These two processes achieve alkali tolerance by positively regulating the detoxification and antioxidant activities of alfalfa.


Asunto(s)
Álcalis/efectos adversos , Glutatión/análisis , Medicago sativa , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Proteínas de Plantas/genética , Antioxidantes/análisis , Peróxido de Hidrógeno , Medicago sativa/enzimología , Medicago sativa/genética , Plantas Modificadas Genéticamente/enzimología , Estrés Fisiológico
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(25): 2669-72, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21820980

RESUMEN

This study established ultra-performance liquid chromatography coupled with a photodiode array detector for determining psilocin and its pharmacokinetics in rat plasma after orally administering an extract of Gymnopilus spectabilis. The extract was separated on an ODS C18 column (2.3 µm, 100 mm × 2.1 mm I.D.) by gradient elution with (A) water containing 50mM AcONH(4) and (B) acetonitrile. The wavelength was set at 265 nm and the injection volume was 10 µL. Under these conditions, the calibration curve was linear over the concentration range 0.2-20 µg/mL with a correlation coefficient of r(2)=0.9992. The inter- and intraday precision levels were less than 7% and the accuracies (%) were within the range 92.0-102.5%. The method was sufficiently valid to be applied to a pharmacokinetics study of psilocin in rat plasma. The pharmacokinetic parameters of psilocin in rat plasma after the oral administration of a G. spectabilis extract were as follows: C(max), 0.43 ± 0.12 µg/mL; T(max), 90 ± 2.1 min; AUC(0→t), 1238.3 ± 96.4 (µg/mL) min; and T(1/2), 117.3 ± 40.3 min.


Asunto(s)
Agaricales/química , Cromatografía Líquida de Alta Presión/métodos , Psilocibina/análogos & derivados , Administración Oral , Animales , Área Bajo la Curva , Estabilidad de Medicamentos , Psilocibina/administración & dosificación , Psilocibina/sangre , Psilocibina/farmacocinética , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...