Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083532

RESUMEN

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499591

RESUMEN

Ovarian cancer is one of the most lethal gynecological cancers worldwide. The poor prognosis of this malignancy is substantially attributed to the inadequate symptomatic biomarkers for early diagnosis and effective remedies to cure the disease against chemoresistance and metastasis. Ovarian cancer metastasis is often relatively passive, and the single clusters of ovarian cancer cells detached from the primary ovarian tumor are transcoelomic spread by the peritoneal fluid throughout the peritoneum cavity and omentum. Our earlier studies revealed that lipid-enriched ascitic/omental microenvironment enforced metastatic ovarian cancer cells to undertake metabolic reprogramming and utilize free fatty acids as the main energy source for tumor progression and aggression. Intriguingly, cell susceptibility to ferroptosis has been tightly correlated with the dysregulated fatty acid metabolism (FAM), and enhanced iron uptake as the prominent features of ferroptosis are attributed to the strengthened lipid peroxidation and aberrant iron accumulation, suggesting that ferroptosis induction is a targetable vulnerability to prevent cancer metastasis. Therefore, the standpoints about tackling altered FAM in combination with ferroptosis initiation as a dual-targeted therapy against advanced ovarian cancer were highlighted herein. Furthermore, a discussion on the prospect and challenge of inducing ferroptosis as an innovative therapeutic approach for reversing remedial resistance in cancer interventions was included. It is hoped this proof-of-concept review will indicate appropriate directions for speeding up the translational application of ferroptosis-inducing compounds (FINs) to improve the efficacy of ovarian cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias Ováricas , Neoplasias Peritoneales , Femenino , Humanos , Metabolismo de los Lípidos , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Epiplón , Microambiente Tumoral
3.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145096

RESUMEN

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

4.
Theor Appl Genet ; 135(1): 51-64, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34689213

RESUMEN

KEY MESSAGE: qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice, was fine-mapped to an 85.60-kb region. GS3 may be a suppressor of qGSN5. Grain size and grain number are two factors that directly determine rice grain yield; however, the underlying genetic mechanisms are complicated and remain largely unclear. In this study, a chromosome segment substitution line (CSSL), CSSL28, which showed increased grain size and decreased grain number per panicle, was identified in a set of CSSLs derived from a cross between 93-11 (recipient) and Nipponbare (donor). Four substitution segments were identified in CSSL28, and the substitution segment located on chromosome 5 was responsible for the phenotypes of CSSL28. Thus, we defined this quantitative trait locus (QTL) as grain size and grain number 5 (qGSN5). Cytological and quantitative PCR analysis showed that qGSN5 regulates the development of the spikelet hull by affecting cell proliferation. Genetic analysis showed that qGSN5 is a semi-dominant locus regulating grain size and grain number. Through map-based cloning and overlapping substitution segment analysis, qGSN5 was finally delimited to an 85.60-kb region. Based on sequence and quantitative PCR analysis, Os05g47510, which encodes a P-type pentatricopeptide repeat protein, is the most likely candidate gene for qGSN5. Pyramiding analysis showed that the effect of qGSN5 was significantly lower in the presence of a functional GS3 gene, indicating that GS3 may be a suppressor of qGSN5. In addition, we found that qGSN5 could improve the grain shape of hybrid rice. Together, our results lay the foundation for cloning a novel QTL coordinating grain size and grain number in rice and provide a good genetic material for long-grain hybrid rice breeding.


Asunto(s)
Genes de Plantas , Oryza/genética , Sitios de Carácter Cuantitativo , Semillas/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Grano Comestible/genética , Estudios de Asociación Genética , Fenotipo , Semillas/anatomía & histología
5.
Adv Sci (Weinh) ; 8(10): 2003642, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026443

RESUMEN

The boom of plant phenotype highlights the need to measure the physiological characteristics of an individual plant. However, continuous real-time monitoring of a plant's internal physiological status remains challenging using traditional silicon-based sensor technology, due to the fundamental mismatch between rigid sensors and soft and curved plant surfaces. Here, the first flexible electronic sensing device is reported that can harmlessly cohabitate with the plant and continuously monitor its stem sap flow, a critical plant physiological characteristic for analyzing plant health, water consumption, and nutrient distribution. Due to a special design and the materials chosen, the realized plant-wearable sensor is thin, soft, lightweight, air/water/light-permeable, and shows excellent biocompatibility, therefore enabling the sap flow detection in a continuous and non-destructive manner. The sensor can serve as a noninvasive, high-throughput, low-cost toolbox, and holds excellent potentials in phenotyping. Furthermore, the real-time investigation on stem flow insides watermelon reveals a previously unknown day/night shift pattern of water allocation between fruit and its adjacent branch, which has not been reported before.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Desarrollo de la Planta/fisiología , Agua/metabolismo , Dispositivos Electrónicos Vestibles , Transporte Biológico , Docilidad , Agua/fisiología
6.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523953

RESUMEN

Wearable sensing technology is an essential link to future personalized medicine. However, to obtain a complete picture of human health, it is necessary but challenging to track multiple analytes inside the body simultaneously. Here, we present a wearable plasmonic-electronic sensor with "universal" molecular recognition ability. Flexible plasmonic metasurface with surface-enhanced Raman scattering (SERS)-activity is introduced as the fundamental sensing component in a wearable sensor since we solved the technical challenge of maintaining the plasmonic activities of their brittle nanostructures under various deformations. Together with a flexible electronic sweat extraction system, our sensor can noninvasively extract and "fingerprint" analytes inside the body based on their unique SERS spectra. As a proof-of-concept example, we successfully monitored the variation of trace-amounts drugs inside the body and obtained an individual's drug metabolic profile. Our sensor bridges the existing gap in wearable sensing technology by providing a universal, sensitive molecular tracking means to assess human health.

7.
Nanoscale Horiz ; 6(2): 68-77, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33400752

RESUMEN

Quantum dot light-emitting diodes (QD-LEDs) are widely recognised as great alternatives to organic light-emitting diodes (OLEDs) due to their enhanced performances. This focus article surveys the current progress on the state-of-the-art QD-LED technology including material synthesis, device optimization and innovative fabrication processes. A discussion on the material synthesis of core nanocrystals, shell layers and surface-binding ligands is presented for high photoluminescence quantum yield (PLQY) quantum dots (QDs) using heavy-metal free materials. The operational principles of several types of QD-LED device architectures are also covered, and the recent evolution of device engineering technologies is investigated. By exploring the fabrication process for pixel-patterning of QD-LEDs on an active-matrix backplane for full-colour display applications, we anticipate further improvement in device performance for the commercialisation of next-generation displays.

8.
ACS Omega ; 5(34): 21593-21601, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905305

RESUMEN

We report on the design, fabrication, and characterization of heterostructure In-Zn-O (IZO) thin-film transistors (TFTs) with improved performance characteristics and robust operation. The heterostructure layer is fabricated by stacking a solution-processed IZO film on top of a buffer layer, which is deposited previously using an electron beam (e-beam) evaporator. A thin buffer layer at the dielectric interface can help to template the structure of the channel. The control of the precursors and of the solvent used during the sol-gel process can help lower the temperature needed for the sol-gel condensation reaction to proceed cleanly. This boosts the overall performance of the device with a significantly reduced subthreshold swing, a four-fold mobility increase, and a two-order of magnitude larger on/off ratio. Atomistic simulations of the a-IZO structure using molecular dynamics (both classical and ab initio) and hybrid density functional theory (DFT) calculations of the electronic structure reveal the potential atomic origin of these effects.

9.
Food Chem ; 317: 126454, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113140

RESUMEN

The reaction efficiency of o-benzoquinones with amines (L-lysine, Nα-acetyl-L-lysine, glycine, L-methionine and L-arginine), thiols (L-cysteine and Nα-acetyl-L-cysteine) and protein (bovine serum albumin) were determined at pH 5.0, 7.0 and 8.0 and scan rate of 10, 50 and 100 mV/s by cyclic voltammetry. Nucleophiles containing multiple nucleophilic groups and nucleophilic group possessing low pKa value would enhance the reactivity of nucleophiles towards o-benzoquinones. The reactivity of different o-benzoquinones with L-lysine/L-cysteine followed the order: protocatechuic acid quinone ≈ catechol quinone > 4-methylbenzoquinone ≈ caffeic acid quinone > rosmarinic acid quinone > chlorogenic acid quinone. The reactivity of quinones would be decreased by the steric hindrance of substituents on quinone ring, and it would also be weakened by enhancing electron cloud density of quinone ring. Adducts generated by the interaction of 4-methylbenzoquinone with amines and thiols were tentatively identified as amine-quinone adduct and thiol-phenol adduct respectively by UPLC-QTOF-MS/MS and cyclic voltammetry.


Asunto(s)
Aminoácidos/química , Benzoquinonas/química , Técnicas Electroquímicas/métodos , Aminas/química , Catecoles/química , Cromatografía Liquida , Cisteína/química , Hidroxibenzoatos/química , Fenoles , Quinonas/química , Compuestos de Sulfhidrilo/química , Espectrometría de Masas en Tándem
10.
ACS Appl Bio Mater ; 3(12): 8901-8910, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019566

RESUMEN

Bioelectricity performs vital functions in the human body. When skin is damaged, the endogenous electric field will orient toward the center of wounds, guiding the migration of relevant cells and stimulating the secretion of growth factors. A large number of experiments have indicated that external electric stimuli have significant positive influences on wound healing. However, the mechanism of this therapy remains unclear, and the current selection of parameters for electric stimuli tends to be arbitrary or empirical, making it inefficient and ineffective. From the perspective of bioelectricity and electrochemistry, the mechanism of electric stimuli is investigated in detail based on a sectioned multilayer model in this work, and an electric stimuli window is obtained in terms of frequency, duty cycle, voltage, and electric charge and verified experimentally. This model provides general guidance for the optimization of electrical stimuli therapy for wound healing.

11.
Nanoscale ; 11(46): 22369-22377, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31729502

RESUMEN

Atomic layer deposited (ALD) ultra-thin alumina film is proposed to control the operational lifetimes of fully biodegradable (FB-) surface sensitive surface acoustic wave (SAW) devices. SAW devices encapsulated with conventional thick organic materials fail to function effectively, while devices with an ultra-thin alumina encapsulation layer (AEL) function normally with high performance. After being subjected to degradation in water, a FB-SAW device with no AEL starts to degrade immediately and fails within 8 h, due to dissolution of the tungsten electrode and piezoelectric material (ZnO). The coating of an ultra-thin AEL on the surfaces prevents SAW devices from undergoing degradation in water and enables SAW devices to perform normally before the AEL is dissolved. The stable operation lifetimes of SAW devices are linearly dependent on the AEL thickness, thus allowing for the design of devices with precisely controlled operational lifetimes and degradation times. The results show that all the materials used could be degraded; also, in vitro cytotoxicity tests indicate that the encapsulated FB-SAW devices are biocompatible, and cells can adhere and proliferate on them normally, demonstrating great potential for broader biodegradable electronic device applications.


Asunto(s)
Óxido de Aluminio/química , Electrónica , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Hidrólisis , Óxidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Tungsteno/química , Óxido de Zinc/química
12.
Commun Biol ; 2: 281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31372520

RESUMEN

Ovarian cancer is an intra-abdominal tumor in which the presence of ascites facilitates metastatic dissemination, and associated with poor prognosis. However, the significance of metabolic alterations in ovarian cancer cells in the ascites microenvironment remains unclear. Here we show ovarian cancer cells exhibited increased aggressiveness in ascites microenvironment via reprogramming of lipid metabolism. High lipid metabolic activities are found in ovarian cancer cells when cultured in the ascites microenvironment, indicating a metabolic shift from aerobic glycolysis to ß-oxidation and lipogenesis. The reduced AMP-activated protein kinase (AMPK) activity due to the feedback effect of high energy production led to the activation of its downstream signaling, which in turn, enhanced the cancer growth. The combined treatment of low toxic AMPK activators, the transforming growth factor beta-activated kinase 1 (TAK1) and fatty acid synthase (FASN) inhibitors synergistically impair oncogenic augmentation of ovarian cancer. Collectively, targeting lipid metabolism signaling axis impede ovarian cancer peritoneal metastases.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Ováricas/patología , Neoplasias Peritoneales/prevención & control , Neoplasias Peritoneales/secundario , Femenino , Humanos , Microambiente Tumoral
13.
Biochem Biophys Res Commun ; 513(2): 528-533, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30979497

RESUMEN

The ALPL gene is linked to hypophosphatasia, a rare genetic disease. Owing to the inverse relationships between ALPL expression and both the International Federation of Gynecology and Obstetrics (FIGO) stages and histological grades assigned to patients with serous ovarian cancer (SOC), this study was designed to explore the role and possible mechanisms of ALPL in cell motility of high grade SOC (HGSOC). The effects of ALPL overexpression on migration and invasion were detected in HGSOC cell lines SKOV3 and HEY. Gene ontology analysis for differential genes with ALPL overexpression identified several biological processes, including EMT, correlated with cell motility. Genes potentially implicated in EMT and associated with ALPL were screened using The Cancer Genome Atlas (TCGA) database. The WNT receptor Frizzled2 (FZD2) was identified and its role in HGSOC cell motility and survival was investigated. It was found that forced expression of ALPL could inhibit migration, invasion, and EMT in HGSOC cells. It also reduced the expression of FZD2 and its ligand WNT5A, accompanied by suppressed expression of their downstream target phosphorylated-STAT3 (pSTAT3). These effects were initiated via the FZD2 knockdown using siRNA and reversed by recombinant WNT5A protein. The relationship between FZD2 expression and poor HGSOC patient survival was also investigated. This data supports that ALPL might restrict the function of WNT5A-FZD2-STAT3 axis, a non-canonical WNT pathway for promoting EMT progression, which results in attenuated migration and invasion in HGSOC cells and improves survival in patients with SOC.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/patología , Vía de Señalización Wnt , Línea Celular Tumoral , Movimiento Celular , Cistadenocarcinoma Seroso/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Humanos , Invasividad Neoplásica/patología , Neoplasias Ováricas/metabolismo
14.
J Genet Genomics ; 46(1): 41-51, 2019 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-30737149

RESUMEN

Grain weight and grain number are two important traits directly determining grain yield in rice. To date, a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18 exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18 is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines. Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1 promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5' RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice.


Asunto(s)
Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/genética , Pleiotropía Genética/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
15.
Sci Rep ; 9(1): 20376, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31889155

RESUMEN

A simulation model of electrical percolation through a three-dimensional network of curved CNTs is developed in order to analyze the electromechanical properties of a highly stretchable fiber strain sensor made of a CNT/polymer composite. Rigid-body movement of the curved CNTs within the polymer matrix is described analytically. Random arrangements of CNTs within the composite are generated by a Monte-Carlo simulation method and a union-find algorithm is utilized to investigate the network percolation. Consequently, the strain-induced resistance change curves are obtained in a wide strain range of the composite. In order to compare our model with experimental results, two CNT/polymer composite fibers were fabricated and tested as strain sensors. Their effective CNT volume fractions are estimated by comparing the experimental data with our simulation model. The results confirm that the proposed simulation model reproduces well the experimental data and is useful for predicting and optimizing the electromechanical characteristics of highly stretchable fiber strain sensors based on CNT/polymer composites.

16.
Oncol Rep ; 39(6): 2653-2663, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29693178

RESUMEN

Serous ovarian cancer (SOC) accounts for >50% of all epithelial ovarian cancers. However, patients with SOC present with various degrees of response to platinum­based chemotherapy and, thus, their survival may differ. The present study aimed to identify the candidate genes involved in the carcinogenesis and drug resistance of SOC by analyzing the microarray datasets GDS1381 and GDS3592. GDS1381 and GDS3592 were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/gds/). A total of 219 differentially expressed genes (DEGs) were identified. Potential genes that may predict the response to carboplatin and, thus, the prognosis of SOC were analyzed. The enriched functions and pathways of DEGs included extracellular region, extracellular space and extracellular exosome, among others. Upon screening the upregulated and downregulated genes on the connectivity map, 10 small­molecule drugs were identified that may be helpful in improving drug sensitivity in patients with ovarian cancer. A total of 30 hub genes were screened for further analysis after constructing the protein­to­protein interaction network. Through survival analysis, comparison of genes across numerous analyses, and immunohistochemistry, GNAI1, non­structural maintenance of chromosomes (non­SMC) condensin I complex subunit H (NCAPH), matrix metallopeptidase 9 (MMP9), aurora kinase A (AURKA) and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) were identified as the key molecules that may be involved in the carcinogenesis and carboplatin resistance of SOC. In conclusion, GNAI1, NCAPH, MMP9, AURKA and EZH2 should be examined in further studies for the possibility of their participation in the carcinogenesis and carboplatin response of SOC.


Asunto(s)
Carboplatino/farmacología , Cistadenocarcinoma Seroso/genética , Resistencia a Antineoplásicos , Redes Reguladoras de Genes , Neoplasias Ováricas/genética , Biología Computacional , Cistadenocarcinoma Seroso/tratamiento farmacológico , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Ováricas/tratamiento farmacológico , Pronóstico , Mapas de Interacción de Proteínas , Análisis de Supervivencia
17.
Rice (N Y) ; 10(1): 25, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28547737

RESUMEN

BACKGROUND: Both grain size and grain number are significant for rice yield. In the past decade, a number of genes related to grain size and grain number have been documented, however, the regulatory mechanisms underlying them remains ambiguous. RESULTS: We identified a rice small grain (sg2) mutant in an EMS mutant library generated from an indica variety, Shuhui498. Using the MutMap gene mapping strategy, we identified two linkage regions on chromosome 7 and 8, respectively, consistent with the segregation ratios in the F2 population. We focused on the linkage region on chromosome 8, and named this locus as 08sg2. One of three SNPs identified in the linkage region was located in an exon of OsBAK1, leading to a nonsynonymous mutation in the kinase domain. The plant harboring the mutant version 08sg2 locus exhibited a decreased grain size, grain number and plant height. Cytological analysis indicated that 08SG2 regulated spikelet hull development by affecting cell proliferation. The grain size and number of knockout mutants of OsBAK1 in the japonica background were significantly decreased, but less so than in 08sg2, supporting the idea that the SNP in OsBAK1 was responsible for the 08sg2 phenotype, but that 08SG2/OsBAK1 function differently in indica and japonica backgrounds. 08sg2 was insensitive to 24-epiBL, and the expression of BR-related genes was obviously altered in 08sg2. The proportionally decreased grain length when 08sg2 and GS3 were combined indicate that 08SG2 and GS3 regulate grain length independently. CONCLUSIONS: Our work shows that 08SG2/OsBAK1 is important for rice yield in both indica and japonica backgrounds, by regulating grain size and grain number, and the function of 08SG2/OsBAK1 is obviously affected by genetic background. The amino acid substituted in 08sg2 is highly conserved among different species, supporting the idea that it is important for the molecular function of 08SG2/OsBAK1. Together, our work is helpful for fully understanding the function of 08SG2/OsBAK1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...