Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Chem Sci ; 15(33): 13191-13200, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183934

RESUMEN

The accurate construction of mono-, bi- and multi-layer networks has been an important challenge, especially for bi- and multi-layer networks. Monolayer, bilayer, sandwich bilayer, four-layer, and multi-layer two-dimensional pillararene-type metal-organic coordination networks have been constructed from functionalized pillar[5]arene and pillar[6]arene by utilizing the coordination interaction of cobalt and copper ions and combining with temperature control and guest induction. These two-dimensional coordination networks exhibit the excellent plasticity of pillararenes and structural variety, which are characterized by X-ray single crystal diffraction and PXRD, confirming that pillararenes units can function as excellent tunable scaffolds for structural regulation. Two-dimensional chiral double-layer structure products are also constructed from R- and S-pillar[6]arene, which are obtained by high-performance liquid chromatography. Atomic force microscopic imaging confirms the thicknesses of these networks. Moreover, these networks also exhibit high iodine adsorption capacity in aqueous environments at ambient temperature. The monolayer, bilayer, sandwich bilayer, four-layer and multi-layer structures of the pillararene-type networks represent a new facile supramolecular self-assembly strategy and platform for designing more mono-, bi- and multi-layer two-dimensional nanomaterials and chiral two-dimensional double-layer structures provide a new method for the construction of more two-dimensional chiral polymers.

2.
Eur J Radiol ; 179: 111666, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128250

RESUMEN

OBJECTIVE: MAGnetic resonance Imaging Compilation (MAGiC) is typical method of synthetic magnetic resonance imaging (MRI). The present aimed to investigate the role of MAGiC parameters of relaxation time (T1), transverse relaxation time (T2) and proton density (PD) to predict the treatment efficacy of breast cancer patients after neoadjuvant chemotherapy (NAC). METHODS: The present prospective cohort study enrolled 120 breast cancer patients who received NAC during 2021-2023. Demographic data and clinical characteristics including tumor node metastasis (TNM) stage, pathological type, molecular classification and lymph node metastasis were collected. The levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) were measured. Patients were divided by treatment efficacy using the Miller-Payne grading as partial pathological response (pPR) group and pathological complete response (pCR). The values of MAGiC parameters of longitudinal T1, T2, and PD values were recorded. RESULTS: In all 120 patients, 73 (60.83%) cases were with pPR and 47 (39.17%) cases were with pCR after treatment. T2 values were markedly lower in pPR patients compared with pCR patients. However, no significant difference was found for T1 and PD values. No significant correlation was observed between any of MAGiC parameters and HER-2, ER or PR. ROC curve showed T2 could be used for prediction of pPR with AUC 0.780. Lymph node metastasis and low levels of T2 were found as independent risk factors for pPR after treatment. CONCLUSION: The T2 value parameter from MAGiC is an independent risk factor for pPR following NAC in breast cancer patients, suggesting its potential as a biomarker for predicting treatment efficacy.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Terapia Neoadyuvante , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Adulto , Resultado del Tratamiento , Quimioterapia Adyuvante , Anciano , Estudios de Cohortes , Valor Predictivo de las Pruebas
3.
Clin Transl Med ; 14(8): e1799, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118300

RESUMEN

AIM: The main focus of this study is to explore the molecular mechanism of IRF7 regulation on RPS18 transcription in M1-type macrophages in pancreatic adenocarcinoma (PAAD) tissue, as well as the transfer of RPS18 by IRF7 via exosomes to PAAD cells and the regulation of ILF3 expression. METHODS: By utilising single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data from the Gene Expression Omnibus database, we identified distinct cell types with significant expression differences in PAAD tissue. Among these cell types, we identified those closely associated with lipid metabolism. The differentially expressed genes within these cell types were analysed, and target genes relevant to prognosis were identified. Flow cytometry was employed to assess the expression levels of target genes in M1 and M2 macrophages. Cell lines with target gene knockout were constructed using CRISPR/Cas9 editing technology, and cell lines with target gene knockdown and overexpression were established using lentiviral vectors. Additionally, a co-culture model of exosomes derived from M1 macrophages with PAAD cells was developed. The impact of M1 macrophage-derived exosomes on the lipid metabolism of PAAD cells in the model was evaluated through metabolomics analysis. The effects of M1 macrophage-derived exosomes on the viability, proliferation, division, migration and apoptosis of PAAD cells were assessed using MTT assay, flow cytometry, EdU assay, wound healing assay, Transwell assay and TUNEL staining. Furthermore, a mouse PAAD orthotopic implantation model was established, and bioluminescence imaging was utilised to assess the influence of M1 macrophage-derived exosomes on the intratumoural formation capacity of PAAD cells, as well as measuring tumour weight and volume. The expression of proliferation-associated proteins in tumour tissues was examined using immunohistochemistry. RESULTS: Through combined analysis of scRNA-seq and ST technologies, we discovered a close association between M1 macrophages in PAAD samples and lipid metabolism signals, as well as a negative correlation between M1 macrophages and cancer cells. The construction of a prognostic risk score model identified RPS18 and IRF7 as two prognostically relevant genes in M1 macrophages, exhibiting negative and positive correlations, respectively. Mechanistically, it was found that IRF7 in M1 macrophages can inhibit the transcription of RPS18, reducing the transfer of RPS18 to PAAD cells via exosomes, consequently affecting the expression of ILF3 in PAAD cells. IRF7/RPS18 in M1 macrophages can also suppress lipid metabolism, cell viability, proliferation, migration, invasion and intratumoural formation capacity of PAAD cells, while promoting cell apoptosis. CONCLUSION: Overexpression of IRF7 in M1 macrophages may inhibit RPS18 transcription, reduce the transfer of RPS18 from M1 macrophage-derived exosomes to PAAD cells, thereby suppressing ILF3 expression in PAAD cells, inhibiting the lipid metabolism pathway, and curtailing the viability, proliferation, migration, invasion of PAAD cells, as well as enhancing cell apoptosis, ultimately inhibiting tumour formation in PAAD cells in vivo. Targeting IRF7/RPS18 in M1 macrophages could represent a promising immunotherapeutic approach for PAAD in the future.


Asunto(s)
Factor 7 Regulador del Interferón , Metabolismo de los Lípidos , Macrófagos , Neoplasias Pancreáticas , Análisis de la Célula Individual , Animales , Humanos , Ratones , Línea Celular Tumoral , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Metabolismo de los Lípidos/genética , Macrófagos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Análisis de la Célula Individual/métodos
4.
Yi Chuan ; 46(8): 589-602, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39140141

RESUMEN

Self-transcribing active regulatory region sequencing (STARR-seq) is a high-throughput sequencing method capable of simultaneously discovering and validating all enhancers within the genome. In this method, candidate sequences are inserted into plasmid vectors and electroporated into cells. Acting as both enhancers and target genes, the self-transcription of these sequences will also be enhanced by themselves. By sequencing the transcriptome and comparing the results with the non-inserted control, the locations and activity of enhancers can be determined. In traditional enhancer discovery strategies, the chromatin open regions and transcription active regions were sequenced and predicted as enhancers. However, the activity of these putative enhancers could only be validated one by one without a high-throughput method. STARR-seq solved this limitation, allowing simultaneous enhancers discovery and activity validation in a high-throughput manner. Since the introduction of STARR-seq, it has been widely used to discover enhancers and validate enhancer activity in a number of organisms and cells. In this review, we present the traditional enhancer prediction methods and the basic principles, development history, specific applications of STARR-seq, and its future prospects, aiming to provide a reference for researchers in related fields conducting enhancer studies.


Asunto(s)
Elementos de Facilitación Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Animales , Análisis de Secuencia de ADN/métodos
5.
J Am Chem Soc ; 146(33): 22869-22873, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39115272

RESUMEN

Tubular structures exist broadly in biological systems and exhibit important functions including mediating cellular communications. The construction of artificial analogues in living cells would provide a new strategy for chemotherapy. In this report, a kind of supramolecular channel has been constructed within intercellular gaps by mimicking the assembly process and structure of natural gap junctional channels, which consist of hydrophobic tubular modules located in the adjacent cell membranes and hydrophilic modules within the extracellular space. The assembly of the channels was driven by electrostatic interactions. The channels could inhibit tumor cell invasion by preventing cell migration.


Asunto(s)
Movimiento Celular , Humanos , Movimiento Celular/efectos de los fármacos , Uniones Comunicantes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/metabolismo , Canales Iónicos/química , Línea Celular Tumoral
6.
ACS Appl Mater Interfaces ; 16(36): 48342-48351, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39216006

RESUMEN

A series of slide-ring polyrotaxanes (SRPs) have been constructed by the solvent-free blending of a ditopic pillar[5]arene (DP5A) and polyisoprene (PIP) after thermal annealing. Solid-state 13C NMR experiments supported the fact that the pillar[5]arene rings of DP5A were threaded by PIP chains to afford physically interlocked networks. Tensile tests revealed that 1% of DP5A can improve the elongation at break from 50 to 239%, the tensile modulus from 2.1 to 3.9 MPa, and the toughness from 0.35 to 4.5 MJ/m3. Impact and puncture resistance experiments show that the DP5A-doped materials exhibit remarkable enhancement of protective and impalement-resistant performance. The samples can be also recycled repeatedly due to their physical crosslinking nature. The important stress delocalization effects have been attributed to the pulley effect of DP5A in the SRP materials, which represents a supramolecular approach for improving the performance of PIP elastomers.

7.
Chem Asian J ; : e202400554, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956446

RESUMEN

A six-cyclic crown ether-type pillar[5]arene was synthesized, and the five ethylene oxide loops were located outside the cavity and not affected by temperature changes which was confirmed by variable-temperature NMR experiment in DMSO-d6 and CDCl3 and 2D 1H-1H NOESY experiment in CDCl3. The six-cyclic pillar[5]-crown also showed greater binding ability of host-guest with bis(pyridinium) derivatives than conventional alkoxy pillar[5]arenes that illustrated through 1H NMR titration spectroscopic experiment in acetone-d6/CDCl3 (1 : 1) and UV-vis titration experiments in CHCl3 at room temperature. The five benzocrown ethers at the periphery were able to bind metal cations by 1H NMR titration spectroscopic experiment in CD2Cl2/methanol-d4(9 : 1).

8.
Eur J Radiol ; 177: 111573, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905803

RESUMEN

PURPOSE: To evaluate the effectiveness of both synthetic magnetic resonance imaging (SyMRI) and conventional diffusion-weighted imaging (DWI) for identifying the human epidermal growth factor receptor 2 (HER2) status in breast cancer (BC) patients. METHOD: In this retrospective study, 114 women with DWI and SyMRI were pathologically classified into three groups: HER2-overexpressing (n = 40), HER2-low-expressing (n = 53), and HER2-zero-expressing (n = 21). T1 and T2 relaxation times and proton density (PD) were assessed before and after enhancement, and the resulting quantitative parameters produced by SyMRI were recorded as T1, T2, and PD and T1e, T2e, and PDe. Logistic regression was used to identify the best indicators for classifying patients based on HER2 expression. The discriminative performance of the models was evaluated using receiver operating characteristic (ROC) curves. RESULTS: Our preliminary study revealed significant differences in progesterone receptor (PR) status, Ki-67 index, and axillary lymph node (ALN) count among the HER2-zero, -low, and -overexpressing groups (p < 0.001 to p = 0.03). SyMRI quantitative indices showed significant differences among BCs in the three HER2 subgroups, except for ΔT2 (p < 0.05). our results indicate that PDe achieved an area under the curve(AUC)of 0.849 (95 % CI: 0.760-0.915) for distinguishing HER2-low and -overexpressing BCs. Further investigation revealed that both the PDe and ADC were indicators for predicting differences among patients with HER2-zero and HER2-low-expressing BC, with AUCs of 0.765(95 % CI: 0.652-0.855) and 0.684(95 % CI: 0.565-0.787), respectively. The addition of the PDe to the ADC improved the AUC to 0.825(95 % CI: 0.719-0.903). CONCLUSIONS: SyMRI could noninvasively and robustly predict the HER2 expression status of patients with BC.


Asunto(s)
Neoplasias de la Mama , Imágenes de Resonancia Magnética Multiparamétrica , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Femenino , Persona de Mediana Edad , Receptor ErbB-2/metabolismo , Estudios Retrospectivos , Adulto , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Biomarcadores de Tumor/metabolismo , Sensibilidad y Especificidad , Reproducibilidad de los Resultados
9.
Chemistry ; 30(35): e202401150, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38639722

RESUMEN

In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se ⋅ ⋅ ⋅ N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se ⋅ ⋅ ⋅ N interactions beyond the crystalline state.

10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 11-20, 2024 Jan 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38615161

RESUMEN

OBJECTIVES: Trigeminal neuralgia (TN) is a severe chronic neuropathic pain that mainly affects the distribution area of the trigeminal nerve with limited treating efficacy. There are numerous treatments for TN, but currently the main clinical approach is to suppress pain by carbamazepine (CBZ). Brain-derived neurotrophic factor (BDNF) is closely related to chronic pain. This study aims to determine the effects of CBZ treatment on BDNF expression in both the trigeminal ganglion (TG) and serum of TN via a chronic constriction injury of the infraorbital nerve (ION-CCI) rat model. METHODS: The ION-CCI models were established in male Sprague-Dawley rats and were randomly divided into a sham group, a TN group, a TN+low-dose CBZ treatment group (TN+20 mg/kg CBZ group), a TN+medium-dose CBZ treatment group (TN+40 mg/kg CBZ group), and a TN+high-dose CBZ treatment group (TN+80 mg/kg CBZ group). The mechanical pain threshold in each group of rats was measured regularly before and after surgery. The expressions of BDNF and tyrosine kinase receptor B (TrkB) mRNA in TGs of rats in different groups were determined by real-time PCR, and the expression of BDNF protein on neurons in TGs was observed by immunofluorescence. Western Blotting was used to detect the protein expression of BDNF, TrkB, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) in TGs of rats in different groups. The expression of BDNF in the serum of rats in different groups was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: The results of mechanical pain sensitivity showed that there was no significant difference in the mechanical pain threshold in the right facial sensory area of the experimental rats in each group before surgery (all P>0.05). From the 3rd day after operation, the mechanical pain threshold of rats in the TN group was significantly lower than that in the sham group (all P<0.01), and the mechanical pain threshold of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 CBZ mg/kg group was higher than that in the TN group (all P<0.05). The BDNF and TrkB mRNA and protein expressions in TGs of rats in the TN group were higher than those in the sham group (all P<0.05), and those in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than the TN group (all P<0.05). The p-ERK levels in TG of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were significantly decreased compared with the TN group (all P<0.05). The BDNF and neuron-specific nuclear protein (NeuN) were mainly co-expressed in neuron of TGs in the TN group and they were significantly higher than those in the sham group (all P<0.05). The co-labeled expressions of BDNF and NeuN in TGs of the TN+ 80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). The results of ELISA showed that the level of BDNF in the serum of the TN group was significantly higher than that in the sham group (P<0.05). The levels of BDNF in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). Spearman correlation analysis showed that the BDNF level in serum was negatively correlated with mechanical pain threshold (r=-0.650, P<0.01). CONCLUSIONS: CBZ treatment can inhibit the expression of BDNF and TrkB in the TGs of TN rats, reduce the level of BDNF in serum of TN rats and the phosphorylation of ERK signaling pathway, so as to inhibit TN. The serum level of BDNF can be considered as an indicator for the diagnosis and prognosis of TN.


Asunto(s)
Carbamazepina , Dolor Crónico , Neuralgia del Trigémino , Animales , Masculino , Ratas , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/genética , Carbamazepina/farmacología , Proteínas Quinasas , Ratas Sprague-Dawley , ARN Mensajero , Ganglio del Trigémino/efectos de los fármacos , Neuralgia del Trigémino/tratamiento farmacológico
11.
Nat Chem ; 16(9): 1418-1426, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38658798

RESUMEN

Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom-up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic-hydrophilic-hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.


Asunto(s)
Uniones Comunicantes , Uniones Comunicantes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Calixarenos/química , Humanos , Compuestos de Amonio Cuaternario/química , Especies Reactivas de Oxígeno/metabolismo , Comunicación Celular , Membrana Celular/metabolismo , Transducción de Señal
12.
Org Lett ; 26(10): 2007-2012, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442042

RESUMEN

Here, we present a versatile modular strategy for crafting novel covalent organic cages (para-cage[n]arenes and meta-cage[n]arenes, n = 3,4) and bimacrocycles (meta-bimacrocyclic-arenes) with stable backbones and modifiable rims. These structures can be synthesized from commercially available aromatic multialdehydes in a three-step process: quantitative bromination, Suzuki-Miyaura reaction (yielding over 60%), and a rapid one-pot Friedel-Crafts reaction with paraformaldehyde. Notably, the cage[n]arenes exhibit a well-defined prismatic shape, and the bimacrocyclic-arenes display both dimeric and monomeric configurations.

13.
J Med Chem ; 67(5): 3860-3873, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38407934

RESUMEN

Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWHs) are widely applied for surgical procedures and extracorporeal therapies, which, however, suffer bleeding risk. Protamine, the only clinically approved antidote, can completely neutralize UFH, but only partially neutralizes LMWHs, and also has a number of safety drawbacks. Here, we show that caltrop-like multicationic small molecules can completely neutralize both UFH and LMWHs. In vitro and ex vivo assays with plasma and whole blood and in vivo assays with mice and rats support that the lead compound is not only superior to protamine by displaying higher neutralization activity and broader therapeutic windows but also biocompatible. The effective neutralization dose and the maximum tolerated dose of the lead compound are determined to be 0.4 and 25 mg/kg in mice, respectively, suggesting good promise for further preclinical studies.


Asunto(s)
Heparina de Bajo-Peso-Molecular , Heparina , Ratas , Ratones , Animales , Heparina/uso terapéutico , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico , Antídotos/farmacología , Antídotos/uso terapéutico , Protaminas/farmacología , Bioensayo , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico
14.
J Med Chem ; 67(3): 2176-2187, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38284525

RESUMEN

Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.


Asunto(s)
Catenanos , Bloqueo Neuromuscular , gamma-Ciclodextrinas , Adulto , Humanos , Animales , Ratas , Sugammadex/farmacología , Rocuronio
15.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256257

RESUMEN

Major depressive disorder (MDD) is a common complication of diabetes and is often observed alongside diabetic neuropathic pain (DNP) as a comorbidity in diabetic patients. Long non-coding RNA (lncRNA) plays an important role in various pathophysiological processes. The P2X7 receptor is responsible for triggering inflammatory responses, such as pyroptosis, linked to pain and depression. The aim of this study was to investigate the effect of lncRNA MSTRG.81401 on hippocampal pyroptosis induced by the P2X7 receptor in diabetic rats with DNP combined with MDD (DNP + MDD). Our results showed that the expression of lncRNA MSTRG.81401 was significantly elevated in the hippocampus of DNP + MDD rats compared with the control group. Following the administration of shRNA targeting lncRNA MSTRG.81401, a notable elevation in mechanical and thermal pain thresholds was observed in rats with comorbid DNP and MDD. Additionally, significant improvements in depression-like behaviors were evident in the open-field test (OFT), sucrose preference test (SPT), and forced swim test (FST). In the DNP + MDD rats, elevated levels in hippocampal P2X7 receptor mRNA and protein were observed, along with increased co-expression of P2X7 and the astrocytic marker glial fibrillary acidic protein (GFAP). Meanwhile, in DNP + MDD rats, the heightened mRNA expression of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), pyroptosis-related protein Gasdermin D (GSDMD), caspase-1, IL-1ß, IL-18, and TNF-α was detected, in addition to increased serum levels of IL-1ß, IL-18 and TNF-α. After shRNA treatment with lncRNA MSTRG.81401, the above abnormal changes in indicators for pyroptosis and inflammation were improved. Therefore, our study demonstrates that shRNA of lncRNA MSTRG.81401 can alleviate the pain and depression-like behaviors in diabetic rats associated with the comorbidity of DNP and MDD by inhibiting the hippocampal P2X7 receptor-mediated pyroptosis pathway and pro-inflammatory responses. This suggests that the P2X7R/NLRP3/caspase-1 implicated pyroptosis and inflammatory scenario may serve as a potential target for the management of comorbid DNP and MDD in diabetes.


Asunto(s)
Trastorno Depresivo Mayor , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Neuralgia , ARN Largo no Codificante , Humanos , Animales , Ratas , ARN Largo no Codificante/genética , Interleucina-18/genética , Receptores Purinérgicos P2X7/genética , Piroptosis/genética , Depresión/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Factor de Necrosis Tumoral alfa/genética , Neuralgia/genética , Caspasas , Hipocampo , ARN Mensajero , ARN Interferente Pequeño
16.
ACS Appl Mater Interfaces ; 16(5): 5869-5880, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277475

RESUMEN

Structural conjugation greatly affects the optical and electronic properties of the COF photocatalyst. Herein, we show that 2D hydrazone COFs with either π-extended biphenyl (BPh-COF) or acetylene (AC-COF) frameworks demonstrated distinct charge transfer and photocatalytic performances. The two COFs show good crystallinity and decent porosity as their frameworks are enforced by intra/interlayers hydrogen bonding. However, computational and experimental data reveal that AC-COF managed broader visible-light absorption and narrower optical bandgaps and performed efficient photoinduced charge separation and transfer in comparison with BPh-COF, meaning that the ethynyl skeleton with enhanced planarity better improves the π-conjugation of the whole structure. As a result, AC-COF exhibited an ideal bandgap for rapid oxidative coupling of amines under visible-light irradiation. Furthermore, taking advantage of its better charge transfer properties, AC-COF demonstrated considerable enhanced product conversion and notable functional tolerance for metallaphotocatalytic C-O cross-coupling of a wide range of both aryl bromides and chlorides with alcohols. More importantly, besides being recoverable, AC-COF showcased the previously inaccessible etherification of dihaloarene. This report shows a facile approach for manipulating the structure-activity relationship and paves the way for the development of a COF photocatalyst for solar-to-chemical energy conversion.

17.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38169100

RESUMEN

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

18.
Chem Soc Rev ; 53(3): 1592-1623, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38167687

RESUMEN

Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.


Asunto(s)
Materiales Biocompatibles , Polímeros , Enlace de Hidrógeno , Polímeros/química
19.
Acta Pharmacol Sin ; 45(1): 98-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37726422

RESUMEN

Restenosis after angioplasty is caused usually by neointima formation characterized by aberrant vascular smooth muscle cell (VSMC) dedifferentiation. Myeloid-derived growth factor (MYDGF), secreted from bone marrow-derived monocytes and macrophages, has been found to have cardioprotective effects. In this study we investigated the effect of MYDGF to postinjury neointimal formation and the underlying mechanisms. Rat carotid arteries balloon-injured model was established. We found that plasma MYDGF content and the level of MYDGF in injured arteries were significantly decreased after balloon injury. Local application of exogenous MYDGF (50 µg/mL) around the injured vessel during balloon injury markedly ameliorated the development of neointimal formation evidenced by relieving the narrow endovascular diameter, improving hemodynamics, and reducing collagen deposition. In addition, local application of MYDGF inhibited VSMC dedifferentiation, which was proved by reversing the elevated levels of osteopontin (OPN) protein and decreased levels of α-smooth muscle actin (α-SMA) in the left carotid arteries. We showed that PDGF-BB (30 ng/mL) stimulated VSMC proliferation, migration and dedifferentiation in vitro; pretreatment with MYDGF (50-200 ng/mL) concentration-dependently eliminated PDGF-BB-induced cell proliferation, migration and dedifferentiation. Molecular docking revealed that MYDGF had the potential to bind with sphingosine-1-phosphate receptor 2 (S1PR2), which was confirmed by SPR assay and Co-IP analysis. Pretreatment with CCG-1423 (Rho signaling inhibitor), JTE-013 (S1PR2 antagonist) or Ripasudil (ROCK inhibitor) circumvented the inhibitory effects of MYDGF on VSMC phenotypic switching through inhibiting S1PR2 or its downstream RhoA-actin monomers (G-actin) /actin filaments (F-actin)-MRTF-A signaling. In summary, this study proves that MYDGF relieves neointimal formation of carotid arteries in response to balloon injury in rats, and suppresses VSMC dedifferentiation induced by PDGF-BB via S1PR2-RhoA-G/F-actin-MRTF-A signaling pathway. In addition, our results provide evidence for cross talk between bone marrow and vasculature.


Asunto(s)
Actinas , Neointima , Ratas , Animales , Becaplermina/farmacología , Neointima/tratamiento farmacológico , Neointima/metabolismo , Actinas/metabolismo , Ratas Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Músculo Liso Vascular , Simulación del Acoplamiento Molecular , Proliferación Celular , Transducción de Señal , Movimiento Celular , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
20.
Cytokine ; 174: 156459, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38056250

RESUMEN

An increasing number of studies have shown that Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, insulin resistance, dyslipidemia, hypertension and metabolic syndrome, but its specific pathogenesis remains unclear. By analyzing GEO database, we found CXCL6 was upregulated in liver tissues of patients with NAFLD. We also confirmed with qPCR that CXCL6 is highly expressed in serum of patients with NAFLD. To identify the underlying impact of CXCL6 on NAFLD, we established animal and cell models of NAFLD. Similarly, we confirmed by qPCR and Western blot that CXCL6 was upregulated in the NAFLD model in vitro and vivo. After transfecting NAFLD cells with siRNA targeting CXCL6 (si-CXCL6), a series of functional experiments were carried out, and these data indicated that the inhibition of CXCL6 reduced intracellular lipid deposition, decreased AST, ALT and TG level, facilitate cell proliferation and suppress their apoptosis. Furthermore, western blot and qPCR analyses displayed that the suppression of CXCL6 could raise the PPARα expression, but PPAR α inhibitor, GW6471 could partially counteract this effect. What's more, Oil Red O staining, biochemical analyzer and TG detection kit revealed that GW6471 could reverse the inhibitory effect of si-CXCL6 on NAFLD. In summary, we provide convincing evidence that CXCL6 is markedly elevated in NAFLD, and the CXCL6/PPARα regulatory network mediates disease progression of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/genética , Hígado/metabolismo , Obesidad/metabolismo , ARN Interferente Pequeño/metabolismo , Metabolismo de los Lípidos , Quimiocina CXCL6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA