Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037090

RESUMEN

Catalytic elimination of halogenated volatile organic compound (HVOC) emissions was still a huge challenge through conventional catalytic combustion technology, such as the formation of halogenated byproducts and the destruction of the catalyst structure; hence, more efficient catalysts or a new route was eagerly desired. In this work, crystal phase- and defect-engineered CePO4 was rationally designed and presented abundant acid sites, moderate redox ability, and superior thermal/chemical stability; the halogenated byproduct-free and stable elimination of HVOCs was achieved especially in the presence of H2O. Hexagonal and defective CePO4 with more structural H2O and Brønsted/Lewis acid sites was more reactive and durable compared with monoclinic CePO4. Based on the phase and defect engineering of CePO4, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS), and kinetic isotope effect experiments, a hydrolysis-oxidation pathway characterized by the direct involvement of H2O was proposed. Initiatively, an external electric field (5 mA) significantly accelerated the elimination of HVOCs and even 90% conversion of dichloromethane could be obtained at 170 °C over hexagonal CePO4. The structure-performance-dependent relationships of the engineered CePO4 contributed to the rational design of efficient catalysts for HVOC elimination, and this pioneering work on external electric field-assisted catalytic hydrolysis-oxidation established an innovative HVOC elimination route.

2.
Environ Sci Technol ; 58(28): 12742-12753, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959431

RESUMEN

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.


Asunto(s)
Oxidación-Reducción , Catálisis , Cerio/química , Propano/química , Propano/análogos & derivados , Rutenio/química
3.
ACS Appl Mater Interfaces ; 16(19): 24691-24702, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38693896

RESUMEN

Metal/metal oxide clusters possess a higher count of unsaturated coordination sites than nanoparticles, providing multiatomic sites that single atoms do not. Encapsulating metal/metal oxide clusters within zeolites is a promising approach for synthesizing and stabilizing these clusters. The unique feature endows the metal clusters with an exceptional catalytic performance in a broad range of catalytic reactions. However, the encapsulation of stable FeOx clusters in zeolite is still challenging, which limits the application of zeolite-encapsulated FeOx clusters in catalysis. Herein, we design a modified solvent-free method to encapsulate FeOx clusters in pure siliceous MFI zeolites (Fe@MFI). It is revealed that the 0.3-0.4 nm subnanometric FeOx clusters are stably encapsulated in the 5/6-membered rings intersectional voids of the pure siliceous MFI zeolites. The encapsulated Fe@MFI catalyst with a Fe loading of 1.4 wt % demonstrates remarkable catalytic activity and recycle stability in the direct oxidation of methane, while also promoting the direct oxidation of cyclohexane, surpassing the performance of conventional zeolite-supported Fe catalysts.

4.
Chem Commun (Camb) ; 60(47): 6067-6070, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804169

RESUMEN

Industrial-scale production of acetaldehyde relies heavily on homogeneous catalysts. Here, we used ethane as the feedstock and developed ZSM-5-supported PdO nanoparticles for the direct oxidation of ethane to acetaldehyde by utilizing O2 and CO. PdO nanoparticles clearly demonstrate effective activity and prevent the further deep oxidation of acetaldehyde.

5.
Environ Sci Technol ; 57(17): 7086-7096, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071842

RESUMEN

Crystal engineering of metal oxide supports represents an emerging strategy to improve the catalytic performance of noble metal catalysts in catalytic oxidation of chlorinated volatile organic compounds (CVOCs). Herein, Pt catalysts on a TiO2 support with different crystal phases (rutile, anatase, and mixed phase (P25)) were prepared for catalytic oxidation of 1,2-dichloroethane (DCE). The Pt catalyst on P25-TiO2 (Pt/TiO2-P) showed optimal activity, selectivity, and stability, even under high-space velocity and humidity conditions. Due to the strong interaction between Pt and P25-TiO2 originating from the more lattice defects of TiO2, the Pt/TiO2-P catalyst possessed stable Pt0 and Pt2+ species during DCE oxidation and superior redox property, resulting in high activity and stability. Furthermore, the Pt/TiO2-P catalyst possessed abundant hydroxyl groups, which prompted the removal of chlorine species in the form of HCl and significantly decreased the selectivity of vinyl chloride (VC) as the main byproduct. On the other hand, the Pt/TiO2-P catalyst exhibited a different reaction path, in which the hydroxyl groups on its surface activated DCE to form VC and enolic species, besides the lattice oxygen of TiO2 for the Pt catalysts on rutile and anatase TiO2. This work provides guidance for the rational design of catalysts for CVOCs.


Asunto(s)
Titanio , Cloruro de Vinilo , Titanio/química , Oxidación-Reducción , Dicloruros de Etileno/química
6.
Adv Mater ; 35(25): e2208504, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37014632

RESUMEN

Precise determination of the structure-property relationship of zeolite-based metal catalysts is critical for the development toward practical applications. However, the scarcity of real-space imaging of zeolite-based low-atomic-number (LAN) metal materials due to the electron-beam sensitivity of zeolites has led to continuous debates regarding the exact LAN metal configurations. Here, a low-damage high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging technique is employed for direct visualization and determination of LAN metal (Cu) species in ZSM-5 zeolite frameworks. The structures of the Cu species are revealed based on the microscopy evidence and also proved by the complementary spectroscopy results. The correlation between the characteristic Cu size in Cu/ZSM-5 catalysts and their direct oxidation of methane to methanol reaction properties is unveiled. As a result, the mono-Cu species stably anchored by Al pairs inside the zeolite channels are identified as the key structure for higher C1 oxygenates yield and methanol selectivity for direct oxidation of methane. Meanwhile, the local topological flexibility of the rigid zeolite frameworks induced by the Cu agglomeration in the channels is also revealed. This work exemplifies the combination of microscopy imaging and spectroscopy characterization serves as a complete arsenal for revealing structure-property relationships of the supported metal-zeolite catalysts.

7.
Environ Sci Technol ; 56(23): 17278-17287, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36335508

RESUMEN

Pt-based catalysts have attracted widespread attention in environmental protection applications, especially in the catalytic destruction of light alkane pollutants. However, developing a satisfying platinum catalyst with high activity, excellent water-resistance, and practical suitability for hydrocarbon combustion at low temperature is challenging. In this study, the Pt catalyst supported on the selected Nb2O5 oxide exhibited an efficient catalytic activity in propane oxidation and exceeded that of most catalysts reported in the literature. More importantly, the Pt/Nb2O5 catalyst maintained excellent activity and durability even after high-temperature aging at 700 °C and under harsh working conditions, such as a certain degree of moisture, high space velocity, and composite pollutants. The excellent performance of the Pt/Nb2O5 catalyst was attributed to the abundant metallic Pt species stabilized on the surface of Nb2O5, which prompted the C-H bond dissociation ability as the rate-determining step. Furthermore, propane was initially activated via oxidehydrogenation and followed the acrylate species path as a more efficient propane oxidation path on the Pt/Nb2O5 surface. Overall, Pt/Nb2O5 can be considered a promising catalyst for the catalytic oxidation of alkanes from industrial sources and could provide inspiration for designing superb catalysts for the oxidation of light alkanes.

8.
Chemosphere ; 307(Pt 2): 135861, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948090

RESUMEN

Supported Pt catalysts usually produce chlorinated byproducts during chlorinated volatile organic compounds (CVOCs) combustion, the removal of formed surface chlorine species is the key to improve the activity, selectivity and stability. In this paper, the Pt chemical state is adjusted by the interaction between Pt and CeO2 through controlling the morphology of CeO2, which further affects the catalytic performance of VC combustion. For Pt/CeO2-octahedron, the weak interaction between Pt and CeO2 results in the formation of PtO2, facilities VC adsorption and C-Cl bonds cleavage and becomes a key active site to accommodate the dissociated Cl species. While the strong interaction leads to the formation of PtxCe1-xO2-σ solid solution on Pt/CeO2-rod has relative lower ability in Cl species removal compared with PtO2. Density functional theory (DFT) calculations also confirms that the introduced Pt species reduces the concentration of Cl species on the surface as well as the chlorinated-byproducts. Hence, Pt/CeO2-octahedron outperformed Pt/CeO2-rod and Pt/CeO2-cube with 90% VC conversion at 280 °C. Furthermore, under the same VC conversion (90%), the concentration of chlorinated byproducts on Pt/CeO2-octahedron was only 4% than that of Pt/CeO2-rod.

9.
Environ Sci Technol ; 56(13): 9661-9671, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35695747

RESUMEN

Developing efficient catalysts for the total oxidation of light alkane at low temperatures is challenging. In this study, superior catalytic performance in the total oxidation of light alkane was achieved by modulating the acidity and redox property of a Pt/CeO2 catalyst through phosphorus modification. Surface modification with phosphorus resulted in electron withdrawal from Pt, leading to platinum species with high valency and the generation of Brönsted acid sites, leading to increased acidity of the Pt/CeO2 catalyst. Consequently, the ability of the Pt/CeO2 catalyst to activate the C-H bond increased with increasing P content in the catalyst owing to the synergistic effect of Ptδ+-(CeO2-POx)δ- dipolar catalytic sites. In contrast, the redox property of the Pt/CeO2 catalyst weakened at first; subsequently, it was partially restored owing to the recovery of a part of the bare ceria surface with increasing P content. The turnover frequency in propane oxidation over the phosphate-modified Pt/CeO2 catalyst with a P/Ce atomic ratio of 0.06 was 10-fold higher than that over the unmodified Pt/CeO2 catalyst at 220 °C. This comprehensive study not only sheds light on the mechanism underlying the surface modification process but also offers a strategy for realizing higher catalytic activity in the total oxidation of light alkanes.

10.
Environ Sci Technol ; 56(12): 8854-8863, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35536552

RESUMEN

Understanding the formation and inhibition of more toxic polychlorinated byproducts from the catalytic oxidation elimination of chlorinated volatile organic compounds (Cl-VOCs) and unveiling efficient strategies have been essential and challenging. Here, RuOx supported on CePO4-doped CeO2 nanosheets (Ru/Pi-CeO2) is designed for boosting catalytic oxidation for the removal of dichloromethane (DCM) as a representative Cl-VOC. The promoted acid strength/number and sintering resistance due to the doping of electron-rich and thermally stable CePO4 are observed along with the undescended redox ability and the exposed multi-active sites, which demonstrates a high activity and durability of DCM oxidation (4000 mg/m3 and 15,000 mL/g·h, stable complete-oxidation at 300 °C), exceptional versatility for different Cl-VOCs, alkanes, aromatics, N-containing VOCs, CO and their multicomponent VOCs, and enhanced thermal stability. The suppression of polychlorinated byproducts is determined over Ru/Pi-CeO2 and oxy-anionic S, V, Mo, Nb, or W doping CeO2, thus the oxy-anionic doping strategy is proposed based on the quenching of the electron-rich oxy-anions on chlorine radicals. Moreover, the simple mechanical mixing with these oxy-anionic salts is also workable even for other catalysts such as Co, Sn, Mn, and noble metal-based catalysts. This work offers further insights into the inhibition of polychlorinated byproducts and contributes to the convenient manufacture of monolithic catalysts with superior chlorine-poisoning resistance for the catalytic oxidation of Cl-VOCs.


Asunto(s)
Compuestos Orgánicos Volátiles , Aniones , Catálisis , Cloro , Oxidación-Reducción
11.
ACS Appl Mater Interfaces ; 13(49): 58605-58618, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34866393

RESUMEN

The design and preparation of efficient coking-resistant catalysts for dry reforming of methane (DRM) is significant for industrial applications but a challenge for supported Ni catalysts. Nanosheet-assembled Al2O3 (NA-Al2O3) with hierarchical hollow microspheres was used to support Ni nanoparticles, which exhibits superior long-time stability and coking resistance for the DRM reaction from 700 to 800 °C without coke deposition. Active Ni species, exsolved from NiAl2O4 spinel, are aggregated into Ni nanoparticles and finally stabilize as spherical Ni nanoparticles of 18.0 nm due to the spatial confinement of hierarchical hollow microspheres of the NA-Al2O3 support after the DRM reaction for 60 h. The catalytic activity in the induction period of the Ni/(NA-Al2O3) catalyst increases because of the enhancement of the surface Ni0/(Ni0+Ni2+) ratio, that is, the increment of the amount of active Ni sites. The spherical Ni nanoparticles embedded in the NA-Al2O3 support, superior CO2 adsorption ability, and more surface hydroxyl groups on the Ni/(NA-Al2O3) catalyst are the determining factors for its long-time stability and excellent anti-coking for the DRM reaction.

12.
Environ Sci Technol ; 55(15): 10734-10743, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34270224

RESUMEN

Ru catalysts have attracted increasing attention in catalytic oxidation of chlorinated volatile organic compounds (CVOCs). However, the development of Ru catalysts with high activity and thermal stability for CVOC oxidation still poses significant challenges due to their restrictive relationship. Herein, a strategy for constructing surface defects on Co3O4 support by acid etching was utilized to strengthen the interaction between active RuOx species and the Co3O4 support. Consequently, both the dispersity and thermal stability of RuOx species were significantly improved, achieving both high activity and stability of Ru catalysts for CVOC oxidation. The optimized Ru catalyst on the HF-etched Co3O4 support (Ru/Co3O4-F) achieved complete oxidation of vinyl chloride at 260 °C under 30 000 mL·g-1·h-1, which was lower than 300 °C for the Ru catalyst on the original Co3O4 (Ru/Co3O4). More importantly, the Ru species on the Ru/Co3O4-F catalyst were hardly lost after calcination at 500-700 °C and even reacting at 650 °C for 120 h. On this basis, the polychlorinated byproducts over the Ru/Co3O4-F catalyst were almost completely effaced by phosphate modification on the catalyst surface. These findings show that the method combining acid etching of the support and phosphate modification provides a strategy for the advancement of catalyst design for CVOC oxidation.


Asunto(s)
Compuestos Orgánicos Volátiles , Catálisis , Oxidación-Reducción , Fosfatos
13.
Environ Sci Pollut Res Int ; 28(40): 56480-56490, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34057630

RESUMEN

Catalytic combustion of propane as typical light alkanes was important for the purification of industrial VOCs and automobile hydrocarbon emissions. Si-doped Al2O3 nanosheet was synthesized by a hydrothermal method, and effects of Si content on the morphology and thermal stability of Al2O3 were investigated. The doping of SiO2 could tune the thickness of Al2O3 nanosheets and significantly improve its thermal stability, the θ phase was still maintained, and the specific surface area was as high as 56.3 m2 g-1 after calcination at 1200 °C. And then the Si-doped Al2O3 nanosheets were used as support of Pd catalysts (Pd/Si-Al2O3 nanosheets) for catalytic combustion of propane, especially Pd/3.6Si-Al2O3 nanosheets, which presented high activity, stability, and resistance to sintering and H2O due to the promotion of Si on the thermal stability of Al2O3 and the stabilization (dispersion, isolation, and strong interaction) of PdOx species.


Asunto(s)
Propano , Agua , Catálisis , Dióxido de Silicio
14.
Environ Sci Technol ; 55(6): 4007-4016, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33666414

RESUMEN

Bulk metal doping and surface phosphate modification were synergically adopted in a rational design to upgrade the CeO2 catalyst, which is highly active but easily deactivated for the catalytic oxidation of chlorinated volatile organic compounds (Cl-VOCs). The metal doping increased the redox ability and defect sites of CeO2, which mostly promoted catalytic activity and inhibited the formation of dechlorinated byproducts but generated polychlorinated byproducts. The subsequent surface modification of the metal-doped CeO2 catalysts with nonmetallic phosphate completely suppressed the formation of polychlorinated byproducts and, more importantly, enhanced the stability of the surface structure by forming a chainmail layer. A highly active, durable, and selective catalyst of phosphate-functionalized RuOx-CeO2 was the most promising among all the metal-doped (Ru, Pd, Pt, Cr, Mn, Fe, Co, and Cu) CeO2 catalysts investigated owing to the prominent chemical stability of RuOx and its superior versatility in the catalytic oxidation of different kinds of Cl-VOCs and other typical pollutants, including dimethyl sulfide, CO, and C3H8. Moreover, the chemical stability of the catalyst, including its bulk and surface structural stability, was investigated by combining intensive treatment with HCl/H2O or HCl with subsequent ex situ ultraviolet-visible light Raman spectroscopy and confirmed the superior resistance to Cl poisoning of the phosphate-functionalized RuOx-CeO2. This work exemplifies a promising strategy for developing ideal catalysts for the removal of Cl-VOCs and provides a catalyst with the superior catalytic performance in Cl-VOC oxidation to date.


Asunto(s)
Fosfatos , Catálisis , Oxidación-Reducción
15.
J Hazard Mater ; 402: 123473, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32711383

RESUMEN

The rational comprehension on the catalytic mechanism and pathways of chlorinated volatile organic compounds (CVOCs) oxidation is meaningful for the design of high performance catalytic materials. Herein, we attempted to elucidate the catalytic mechanism and pathways of 1, 2-dichloropropane (1, 2-DCP) oxidation over LaMnO3 perovskite from experimental and theoretical studies. Experimental results indicate that the initial dechlorination of 1, 2-DCP into allyl chloride (AC) can be readily achieved over LaMnO3, while the further decomposition of AC is more vulnerable to be affected by the reaction conditions and strongly dependent on the surface active oxygen species. Density functional theory (DFT) calculation reveals that the heterogeneous conversion of 1, 2-DCP initiates with the chemisorption on the Mn site, followed by the formation of AC via a synergistic mechanism. AC decomposition is considered as the rate-determining step under an inert condition, while the dechlorination of adsorbed 1, 2-DCP dominates the whole reaction under an oxygen atmosphere.

16.
Environ Sci Technol ; 54(4): 2530-2538, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31990529

RESUMEN

A novel Ti-doped Sm-Mn mixed oxide (TiSmMnOx) was first designed for the selective catalytic reduction (SCR) of NOx with NH3 at a low temperature. The TiSmMnOx catalyst exhibited a superior catalytic performance, in which NOx conversion higher than 80% and N2 selectivity above 90% could be achieved in a wide-operating temperature window (60-225 °C). Specially, the catalyst also showed high durability against the large space velocity and excellent SO2/H2O resistance. Ti incorporation can efficiently inhibit MnOx crystallization and tune the MnOx phase during calcination at a high temperature. Subsequently, a high specific surface area as well as an increased amount of acid sites on the TiSmMnOx catalysts were produced. Further, the reducibility of the Sm-doped MnOx catalyst was modulated, facilitating NO oxidation and inhibiting NH3 nonselective oxidation. Consequently, a superior SCR activity was achieved at a low temperature and the operating temperature window of the TiSmMnOx catalyst was significantly widened. These findings may provide new insights into the reasonable design and development of the new non-vanadium catalysts with a high NH3-SCR activity for industrial application.


Asunto(s)
Manganeso , Samario , Amoníaco , Catálisis , Óxido Nítrico , Oxidación-Reducción , Óxidos , Temperatura , Titanio
17.
J Hazard Mater ; 385: 121581, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31732347

RESUMEN

A unique zeolite catalyst, Fe doped ZSM-5 microsphere assembled by uniform nanorod-like crystals with hierarchical pore structure, was successfully synthesized and applied for the adsorption and degradation of trace chlorobenzene (CB) in the presence of H2O2. The organic ferric salts as the precursors, ethylene glycol as a chelating/reducing agent and the dynamic two-stage temperature-varied hydrothermal technique, together made the synthesized hierarchical Fe-ZSM-5 nanorods assembled microspheres (FZ-CA-5EG) to be characterized by abundant highly dispersed and valency-controlled framework Fe3+/2+ species. As a result of these features, the FZ-CA-5EG showed excellent ability of adsorption and degradation efficiency of CB, and enhanced durability due to negligible leaching of framework Fe species. Moreover, the hydroxyl radicals were determined as the main the reactive oxygen species of CB oxidation degradation, and a possible adsorption-oxidation degradation pathway was proposed.

18.
ACS Omega ; 4(5): 9542-9551, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460044

RESUMEN

Co-, Ni-, and Zn-containing MOFs are prepared and then pyrolyzed to generate materials for ambient temperature NO adsorption. Materials containing Co are much more efficient for NO adsorption than those containing Ni and Zn; therefore, Co is identified as the active phase. The best performing material studied here achieves 100% low concentration (10 ppm) NO adsorption for more than 15 h under a weight hourly space velocity of 120 000 mL g-1 h-1. Powder X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopies, along with scanning electron microscopy and TEM, are used to probe the physicochemical properties of the materials, particularly the Co active phase, and chemistries involved in NO adsorption-desorption. NO adsorbs on oxygen-covered Co nanoparticle surfaces in the form of nitrates and desorbs as NO at higher temperatures as a result of surface nitrate decomposition. NO storage capacity decreases gradually upon repeated NO adsorption-desorption cycles, likely because of Co3O4 formation during these processes.

19.
Chemistry ; 25(36): 8494-8498, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31041807

RESUMEN

Ruthenium (Ru)@Ordered mesoporous carbon (OMC) is a key catalyst in fine-chemical production. In general, the OMC support is prepared by a wet self-assembly requiring excessive solvent, toxic phenol-aldehyde precursors and a long reaction time, followed by post-immobilization to load Ru species. Herein, we wish to report a solid-state, rapid, and green strategy for the synthesis of Ru@OMC with biomass tannin as the precursor. The chemistry essence of this strategy lies in the mechanical-force-driven assembly, during which tannin-metal (Zn2+ and Ru3+ ) coordination polymerization and hydrogen-bonding interactions between tannin-block copolymer (PEO-PPO-PEO, F127) simultaneously occur. After thermal treatment, Ru@OMC catalysts with mesoporous channels, narrow pore-size distribution (≈7 nm), and high surface area (up to 779 m2 g-1 ) were directed by F127 micelles. Meanwhile, the Zn2+ ions dilute Ru3+ and avoid the sintering of Ru species, resulting in Ru clusters around 1.4-1.7 nm during carbonization (800 °C). Moreover, the Ru@OMC catalyst afforded a good activity (TOF: up to 4170 h-1 ) in the selective oxidation of benzyl alcohol to benzaldehyde by molecular oxygen.

20.
Nat Commun ; 10(1): 1611, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962455

RESUMEN

The design and synthesis of robust sintering-resistant nanocatalysts for high-temperature oxidation reactions is ubiquitous in many industrial catalytic processes and still a big challenge in implementing nanostructured metal catalyst systems. Herein, we demonstrate a strategy for designing robust nanocatalysts through a sintering-resistant support via compartmentalization. Ultrafine palladium active phases can be highly dispersed and thermally stabilized by nanosheet-assembled γ-Al2O3 (NA-Al2O3) architectures. The NA-Al2O3 architectures with unique flowerlike morphologies not only efficiently suppress the lamellar aggregation and irreversible phase transformation of γ-Al2O3 nanosheets at elevated temperatures to avoid the sintering and encapsulation of metal phases, but also exhibit significant structural advantages for heterogeneous reactions, such as fast mass transport and easy access to active sites. This is a facile stabilization strategy that can be further extended to improve the thermal stability of other Al2O3-supported nanocatalysts for industrial catalytic applications, in particular for those involving high-temperature reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA