Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Physiol Rep ; 12(8): e16014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644513

RESUMEN

HMG (high mobility group) proteins are a diverse family of nonhistone chromosomal proteins that interact with DNA and a wide range of transcriptional regulators to regulate the structural architecture of DNA. HMGXB4 (also known as HMG2L1) is an HMG protein family member that contains a single HMG box domain. Our previous studies have demonstrated that HMGXB4 suppresses smooth muscle differentiation and exacerbates endotoxemia by promoting a systemic inflammatory response in mice. However, the expression of Hmgxb4 in vivo has not fully examined. Herein, we generated a mouse model that harbors a gene trap in the form of a lacZ gene insertion into the Hmgxb4 gene. This mouse enables the visualization of endogenous HMGXB4 expression in different tissues via staining for the ß-galactosidase activity of LacZ which is under the control of the endogenous Hmgxb4 gene promoter. We found that HMGXB4 is widely expressed in mouse tissues and is a nuclear protein. Furthermore, the Hmgxb4 gene trap mice exhibit normal cardiac function and blood pressure. Measurement of ß-galactosidase activity in the Hmgxb4 gene trap mice demonstrated that the arterial injury significantly induces Hmgxb4 expression. In summary, the Hmgxb4 gene trap reporter mouse described here provides a valuable tool to examine the expression level of endogenous Hmgxb4 in both physiological and pathological settings in vivo.


Asunto(s)
Proteínas del Grupo de Alta Movilidad , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Operón Lac/genética , Ratones Transgénicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Neuroreport ; 35(6): 374-379, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526932

RESUMEN

Lethal giant larvae 1 (LGL1) is originally recognized as a tumor suppressor, implicated in maintaining cell polarity in Drosophila and mammalian cells. Cell polarity plays a crucial role in tumorigenesis. We previously established Pax2-LGL1 -/- conditional knockout mice but did not focus on the tumorigenesis in cerebellar primordium. HE staining was used to detect the morphological structure of the cerebellar primordium during early embryonic development in Pax2-LGL1 -/- mice. Immunofluorescence assays were used to detect the expression of polar molecules. TUNEL staining assessed tissue apoptosis. Our findings reveal that deletion of LGL1 leads to the emergence of neuroblastoma-like tissues within the cerebellum primordium during early embryogenesis. This outcome can be attributed to alterations in expression patterns of polar molecules Cdc42 and ß-catenin following early deletion of LGL1, resulting in loss of cell polarity among neuroepithelial cells and subsequent formation of tumor-like tissues. However, further histological examination demonstrated that these tumor-like tissues disappear from embryonic day 15.5 onwards within the cerebellar primordium of Pax2-LGL1 -/- mice due to apoptosis-mediated cellular compensation. Our data emphasize the importance of LGL1 in maintaining neuroepithelial cell polarity and reveal a novel role for LGL1 in regulating tumorigenesis and ablation in the cerebellar primordium.


Asunto(s)
Apoptosis , Cerebelo , Glicoproteínas , Animales , Ratones , Carcinogénesis , Cerebelo/metabolismo , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Ratones Noqueados
3.
Biochem Biophys Rep ; 38: 101671, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38444736

RESUMEN

Lgl1 protein plays a critical role in neurodevelopment, including hippocampus, olfactory bulb, and Purkinje cell. However, the specific mechanism of LGL1 function in the midbrain remains elusive. In this study, we generated Lgl1 conditional knockout mice using Pax2-Cre, which is expressed in the midbrain, and examined the functions of Lgl1 in the midbrain. Histological analysis exhibited abnormal midbrain development characterized by enlarged ventricular aqueduct and thinning tectum cortex. Lgl1 deletion caused excessive proliferation and heightened apoptosis of neural progenitor cells in the tectum of LP cko mice. BrdU labeling studies demonstrated abnormal neuronal migration. Immunofluorescence analysis of Nestin demonstrated an irregular and clustered distribution of glial cell fibers, with the adhesion junction marker N-cadherin employed for immunofluorescent labeling, unveiling abnormal epithelial connections within the tectum of LP cko mice. The current findings suggest that the deletion of Lgl1 leads to the disruption of the expression pattern of N-cadherin, resulting in abnormal development of the midbrain.

4.
Cell Death Dis ; 14(12): 845, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114454

RESUMEN

Glutathione synthetase (GSS) catalyzes the final step in the synthesis of glutathione (GSH), a well-established antioxidant. Research on the specific roles of the Gss gene during spermatogenesis remains limited due to the intricate structure of testis. In this study, we identified pachytene spermatocytes as the primary site of GSS expression and generated a mouse model with postnatal deletion of Gss using Stra8-Cre (S8) to investigate the role of GSS in germ cells. The impact of Gss knockout on reducing male fertility is age-dependent and caused by ferroptosis in the testis. The 2-month-old S8/Gss-/- male mice exhibited normal fertility, due to a compensatory increase in GPX4, which prevented the accumulation of ROS. With aging, there was a decline in GPX4 and an increase in ALOX15 levels observed in 8-month-old S8/Gss-/- mice, resulting in the accumulation of ROS, lipid peroxidation, and ultimately testicular ferroptosis. We found that testicular ferroptosis did not affect spermatogonia, but caused meiosis disruption and acrosome heterotopia. Then the resulting aberrant sperm showed lower concentration and abnormal morphology, leading to reduced fertility. Furthermore, these injuries could be functionally rescued by inhibiting ferroptosis through intraperitoneal injection of GSH or Fer-1. In summary, Gss in germ cells play a crucial role in the resistance to oxidative stress injury in aged mice. Our findings deepen the understanding of ferroptosis during spermatogenesis and suggest that inhibiting ferroptosis may be a potential strategy for the treatment of male infertility.


Asunto(s)
Ferroptosis , Glutatión Sintasa , Infertilidad Masculina , Testículo , Glutatión Sintasa/deficiencia , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Espermatocitos/metabolismo , Infertilidad Masculina/genética , Testículo/enzimología , Testículo/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Ferroptosis/genética , Técnicas de Inactivación de Genes , Células Germinativas/citología , Meiosis/genética , Espermatogénesis/genética , Acrosoma/patología , Autofagia/genética , Masculino , Femenino , Animales , Ratones , Factores de Edad
5.
Adv Sci (Weinh) ; 10(20): e2300402, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37171794

RESUMEN

The peroxisome is a ubiquitous organelle in rodent cells and plays important roles in a variety of cell types and tissues. It is previously indicated that peroxisomes are associated with auditory function, and patients with peroxisome biogenesis disorders (PBDs) are found to have hearing dysfunction, but the specific role of peroxisomes in hearing remains unclear. In this study, two peroxisome-deficient mouse models (Atoh1-Pex5-/- and Pax2-Pex5-/- ) are established and it is found that peroxisomes mainly function in the hair cells of cochleae. Furthermore, peroxisome deficiency-mediated negative effects on hearing do not involve mitochondrial dysfunction and oxidative damage. Although the mammalian target of rapamycin complex 1 (mTORC1) signaling is shown to function through peroxisomes, no changes are observed in the mTORC1 signaling in Atoh1-Pex5-/- mice when compared to wild-type (WT) mice. However, the expression of large-conductance, voltage-, and Ca2+ -activated K+ (BK) channels is less in Atoh1-Pex5-/- mice as compared to the WT mice, and the administration of activators of BK channels (NS-1619 and NS-11021) restores the auditory function in knockout mice. These results suggest that peroxisomes play an essential role in cochlear hair cells by regulating BK channels. Hence, BK channels appear as the probable target for treating peroxisome-related hearing diseases such as PBDs.


Asunto(s)
Pérdida Auditiva , Canales de Potasio de Gran Conductancia Activados por el Calcio , Ratones , Animales , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Peroxisomas/metabolismo , Células Ciliadas Auditivas/metabolismo , Ratones Noqueados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mamíferos/metabolismo
7.
Commun Biol ; 6(1): 214, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823181

RESUMEN

Spermatogenesis is an extremely complex process, and any obstruction can cause male infertility. RhoGDIα has been identified as a risk of male sterility. In this study, we generate RhoGDIα knockout mice, and find that the males have severely low fertility. The testes from RhoGDIα-/- mice are smaller than that in WT mice. The numbers of spermatogonia and spermatocytes are decreased in RhoGDIα-/- testis. Spermatogenesis is compromised, and spermatocyte meiosis is arrested at zygotene stage in RhoGDIα-/- mice. Acrosome dysplasia is also observed in sperms of the mutant mice. At the molecular level, RhoGDIα deficiency activate the LIMK/cofilin signaling pathway, inhibiting F-actin depolymerization, impairing testis and inducing low fertility in mouse. In addition, the treatment of RhoGDIα-/- mice with Rac1 inhibitor NSC23766 alleviate testis injury and improve sperm quality by inhibiting the LIMK/cofilin/F-actin pathway during spermatogenesis. Together, these findings reveal a previously unrecognized RhoGDIα/Rac1/F-actin-dependent mechanism involved in spermatogenesis and male fertility.


Asunto(s)
Actinas , Infertilidad Masculina , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Animales , Masculino , Ratones , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Infertilidad Masculina/genética , Ratones Noqueados , Proteína de Unión al GTP rac1/genética , Inhibidor alfa de Disociación del Nucleótido Guanina rho/genética , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Semen/metabolismo , Transducción de Señal/fisiología , Espermatogénesis
8.
Cell Prolif ; 56(3): e13365, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36433756

RESUMEN

Peroxisomes are involved in the regulation of various pathological processes. Peroxisomal biogenesis factor 5 (PEX5), which plays an essential role in peroxisomal biogenesis, is critical for reactive oxygen species (ROS) accumulation. However, its underlying functions in spermatogenesis have not yet been identified. Pex5 was deleted by crossing Stra8-Cre mice with Pex5flox/flox mice before the onset of meiosis. The morphology of testes and epididymides, spermatogenesis function, and fertility in both wild type (WT) and Pex5-/- mice were analysed by haematoxylin and eosin (HE) and immunofluorescent staining. Mechanism of PEX5 affecting peroxisomes and spermatogenesis were validated by Western blot and transmission electron microscopy (TEM). Transcriptome RNA sequencing (RNA-seq) was used to profile the dysregulated genes in testes from WT and Pex5-/- mice on postnatal day (P) 35. The adult Pex5 knockout male mice were completely sterile with no mature sperm production. Loss of Pex5 in spermatocytes resulted in multinucleated giant cell formation, meiotic arrest, abnormal tubulin expression, and deformed acrosome formation. Furthermore, Pex5 deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene stage. Impaired peroxisome function in Pex5 knockout mice induced ROS redundancy, which in turn led to an increase in germ cell apoptosis and a decline in autophagy. Pex5 regulates ROS during meiosis and is essential for spermatogenesis and male fertility in mice.


Asunto(s)
Infertilidad , Semen , Animales , Masculino , Ratones , Infertilidad/metabolismo , Meiosis , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
9.
Life Sci ; 314: 121319, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574945

RESUMEN

Heat shock proteins (HSPs) have important roles in different developmental stages of spermatogenesis. The heat shock 70 kDa protein 5 (HSPA5) is an important component of the unfolded protein response that promotes cell survival under endoplasmic reticulum (ER) stress conditions. In this study, we explored the function of HSPA5 in spermatogenesis, by generating a germ cell-specific deletion mutant of the Hspa5 gene (conditional knockout of the Hspa5 gene, Hspa5-cKO) using CRISPR/Cas9 technology and the Cre/Loxp system. Hspa5 knockout resulted in severe germ cell loss and vacuolar degeneration of seminiferous tubules, leading to complete arrest of spermatogenesis, testicular atrophy, and male infertility in adult mice. Furthermore, defects occurred in the spermatogenic epithelium of Hspa5-cKO mice as early as Cre recombinase expression. Germ cell ablation of Hspa5 impaired spermatogonia proliferation and differentiation from post-natal day 7 (P7) to P10, which led to a dramatic reduction of differentiated spermatogonia, compromised meiosis, and led to impairment of testis development and the disruption of the first wave of spermatogenesis. Consistent with these results, single-cell RNA sequencing (scRNA-seq) analysis showed that germ cells, especially differentiated spermatogonia, were dramatically reduced in Hspa5-cKO testes compared with controls at P10, further confirming that HSPA5 is crucial for germ cell development. These results suggest that HSPA5 is indispensable for normal spermatogenesis and male reproduction in mice.


Asunto(s)
Infertilidad Masculina , Testículo , Masculino , Ratones , Animales , Humanos , Ratones Noqueados , Testículo/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo
10.
PeerJ ; 10: e14472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518274

RESUMEN

Spermatogenesis and sperm maturation are complex and highly ordered biological processes. Any failure or disorder in these processes can cause defects in sperm morphology, motility, and fertilization ability. Cathepsin B (CTSB) is involved in the regulation of a variety of pathological processes. In the present study, we found that CTSB was abundantly expressed in the male reproductive system, however, the specific role of CTSB in regulating spermatogenesis and sperm maturation remained elusive. Hence, we generated Ctsb -/- mice using CRISPR/Cas9 technology. In Ctsb -/- mice, sperm count was significantly decreased while the level of morphologically abnormal sperm was markedly increased. Additionally, these mice had significantly lower levels of progressive motility sperm and elevated levels of immobilized sperm. Histological analysis showed slight vacuolization in the testis epithelium, as well as the loss of epididymal epithelium cells. Further investigation showed that autophagic activity was inhibited and apoptotic activity was increased in both the testis and epididymis of Ctsb -/- mice. Together, our findings demonstrate that CTSB plays an important role in spermatogenesis and sperm maturation in mice.


Asunto(s)
Catepsina B , Espermatogénesis , Animales , Masculino , Ratones , Apoptosis , Catepsina B/genética , Catepsina B/metabolismo , Semen , Maduración del Esperma
11.
FASEB J ; 36(12): e22661, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36398584

RESUMEN

The process of spermatogenesis is a complex and delicate process that is still not fully understood. In this study, we examined the role of fatty acid oxidase 3-hydroxy acyl CoA dehydrogenase (HADH) in maintaining normal spermatogenesis in mice. In male mice, ablation of the Hadh gene using CRISPR/Cas9 technology arrested spermatocyte meiosis, increased multinucleated giant germ cells and vacuoles in seminiferous tubules, and accompanied with acrosomal dysplasia. Hadh-/- male mice showed the typical features of oligoasthenoteratozoospermia (OAT), including decreased sperm concentration and motility and increased sperm abnormalities. Next, we explored the molecular events in the testes of the mutant mice. We found fatty acids accumulated in the testis of Hadh-/- mice. And also, inflammatory factors TNF-α, IL-1ß, and IL-6 were significantly increased, apoptosis-related protein Bcl-2 was decreased, and Bax and cleaved-Caspase3 were increased in Hadh-/- male mice testis. After using etanercept, a specific inhibitor of TNF-α, testis injury caused by Hadh knockout was significantly alleviated, the sperm quality and motility were improved, and germ cell apoptosis was reduced. So our study demonstrated that Hadh deletion caused an increase in fatty acids. The accumulated fatty acids further induced testicular inflammation and germ cell apoptosis through the TNF-α/Bcl-2 signaling pathway, finally resulting in OAT in the Hadh-/- mice. Inhibiting TNF-α may be used as a new treatment approach for testicular inflammation and OAT.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasa , Astenozoospermia , Infertilidad Masculina , Oligospermia , Animales , Masculino , Ratones , Astenozoospermia/genética , Astenozoospermia/metabolismo , Ácidos Grasos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Inflamación/genética , Inflamación/metabolismo , Oligospermia/genética , Oligospermia/metabolismo , Semen/metabolismo , Espermatocitos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasa/deficiencia , 3-Hidroxiacil-CoA Deshidrogenasa/genética , 3-Hidroxiacil-CoA Deshidrogenasa/metabolismo , Genes bcl-2/genética , Genes bcl-2/fisiología
12.
Front Aging Neurosci ; 14: 773687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721029

RESUMEN

Objective: To explore the effect of moxa cone moxibustion on N-acetyl aspartate/total creatinine (NAA/tCr) and choline/total creatinine (Cho/tCr) in the bilateral hippocampus (HIP) and bilateral posterior cingulate gyrus (PCG) in patients with mild cognitive impairment (MCI) using hydrogen proton magnetic resonance spectroscopy (1H-MRS) and to provide imaging basis for moxa cone moxibustion treatment for MCI. Methods: One hundred eight patients with MCI were served as the MCI group, and 67 age-matched subjects were enrolled as the normal control group. The MCI group was randomized and allocated into acupoint group, drug group, and sham acupoint group, with 36 cases in each group. Some patients in each group withdrew. Finally, 25 cases were included in the acupoint group, 24 cases in the drug group, and 20 cases in the sham acupoint group. The drug group was treated with oral donepezil hydrochloride. The acupoint group and sham acupoint group received moxa cone moxibustion treatment. Mini-mental state exam (MMSE) and Montreal cognitive assessment (MoCA) scores were recorded before intervention, at the end of the first and the second months of intervention, and in the 5th month of follow-up. The NAA/tCr and Cho/tCr ratios in the HIP and PCG were bilaterally measured by 1H-MRS before and after intervention. Results: Before intervention, compared with the normal control group, the MMSE and MoCA scores, the Cho/tCr ratio in the right HIP, the NAA/tCr ratio in the bilateral HIP, and the NAA/tCr ratio in the left PCG in the three treatment groups decreased significantly (both p < 0.01), and the NAA/tCr ratio in the right PCG significantly reduced in the acupoint and drug groups (p < 0.05). After two months of treatment, compared with the normal control group, there were no differences in the MoCA scores, the NAA/tCr, and Cho/tCr ratios in the bilateral PCG and bilateral HIP in the three treatment groups (p > 0.05). However, the MMSE scores in the drug group decreased when compared with the acupoint group and normal control group (p < 0.05, p < 0.01). The scores of MMSE and MoCA in the acupoint group and sham acupoint group at all time points were better than those in the drug group, which were similar to those in the normal control group. Conclusion: Our findings suggest that moxibustion could improve the cognitive function of patients with MCI. The mechanism may be related to the improvement of abnormal brain metabolism in HIP and PCG.

13.
Proc Natl Acad Sci U S A ; 119(10): e2107357119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238644

RESUMEN

The Food and Drug Administration­approved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.


Asunto(s)
Pérdida Auditiva Sensorineural/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/prevención & control , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Sirolimus/efectos adversos , Sirolimus/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Front Cell Dev Biol ; 9: 750023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722533

RESUMEN

The small muscle protein, x-linked (SMPX) encodes a small protein containing 88 amino acids. Malfunction of this protein can cause a sex-linked non-syndromic hearing loss, named X-linked deafness 4 (DFNX4). Herein, we reported a point mutation and a frameshift mutation in two Chinese families who developed gradual hearing loss with age. To explore the impaired sites in the hearing system and the mechanism of DFNX4, we established and validated an Smpx null mouse model using CRISPR-Cas9. By analyzing auditory brainstem response (ABR), male Smpx null mice showed a progressive hearing loss starting from high frequency at the 3rd month. Hearing loss in female mice was milder and occurred later compared to male mice, which was very similar to human beings. Through morphological analyses of mice cochleas, we found the hair cell bundles progressively degenerated from the shortest row. Cellular edema occurred at the end phase of stereocilia degeneration, followed by cell death. By transfecting exogenous fluorescent Smpx into living hair cells, Smpx was observed to be expressed in stereocilia. Through noise exposure, it was shown that Smpx might participate in maintaining hair cell bundles. This Smpx knock-out mouse might be used as a suitable model to explore the pathology of DFNX4.

15.
Ital J Pediatr ; 47(1): 187, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526082

RESUMEN

BACKGROUND: Although it is known that unbound bilirubin can enter the brain, there is little evidence of its association with the development of acute bilirubin encephalopathy. Here, we investigated this potential relationship in neonates who had undergone exchange transfusion. METHODS: Data from 46 newborns who underwent exchange transfusion between 2016 and 1-1 to 2018-12-31 at the First People's Hospital of Changde City in China were analyzed. The unbound bilirubin level was taken as the independent variable and the development of the acute bilirubin encephalopathy as the dependent variable. The covariates were age, birth weight, sex, red blood cell count, blood glucose, hemolytic disease, and whether the infant had received phototherapy. RESULTS: The mean age and gestational age of the neonates were 146.5 ± 86.9 h and 38.6 ± 1.3 weeks [38.7(34.6-41.1) weeks] old, respectively; 52.17% were male. Binary logistic regression analysis after adjustment for covariates showed a positive association between the levels of unbound bilirubin and the development of acute bilirubin encephalopathy (odds ratio = 1.41, 95% confidence intervals 1.05-1.91, P = < 0.05). CONCLUSION: There is a significant association between unbound bilirubin levels and the development of acute bilirubin encephalopathy in neonates. Further investigations are required to explore the mechanisms.


Asunto(s)
Bilirrubina/sangre , Recambio Total de Sangre , Hiperbilirrubinemia Neonatal/terapia , Ictericia Neonatal/terapia , Kernicterus/sangre , Femenino , Humanos , Hiperbilirrubinemia Neonatal/sangre , Recién Nacido , Ictericia Neonatal/sangre , Masculino
16.
Front Psychol ; 12: 739827, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484090

RESUMEN

Given the fact that EFL/ESL students' academic engagement is of high importance for their learning success, numerous studies have been carried out to identify factors contributing to students' engagement. However, the role of teacher personal factors, notably teacher work engagement has received scant attention. Moreover, no review study has been conducted on this issue. Accordingly, the present review intends to explicate the multidimensional essence of teacher work engagement and student academic engagement and the association between these constructs. In light of the theoretical and empirical evidence, the role of EFL/ESL teachers' work engagement in improving their students' academic engagement was proved. The pedagogical implications of the findings are also highlighted.

17.
Front Genet ; 12: 508750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434211

RESUMEN

Inhibitors of differentiation/DNA binding (Id) proteins are crucial for inner ear development, but whether Id mutations affect middle ear function remains unknown. In this study, we obtained Id1-/-; Id3+/- mice and Id1+/-; Id3-/- mice and carefully examined their middle ear morphology and auditory function. Our study revealed a high incidence (>50%) of middle ear infection in the compound mutant mice. These mutant mice demonstrated hearing impairment starting around 30 days of age, as the mutant mice presented elevated auditory brainstem response (ABR) thresholds compared to those of the littermate controls. The distortion product of otoacoustic emission (DPOAE) was also used to evaluate the conductive function of the middle ear, and we found much lower DPOAE amplitudes in the mutant mice, suggesting sound transduction in the mutant middle ear is compromised. This is the first study of the middle ears of Id compound mutant mice, and high incidence of middle ear infection determined by otoscopy and histological analysis of middle ear suggests that Id1/Id3 compound mutant mice are a novel model for human otitis media (OM).

18.
Aging (Albany NY) ; 13(8): 11678-11695, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33882456

RESUMEN

Piccolo is a presynaptic protein with high conservation among different species, and the expression of Piccolo is extensive in vertebrates. Recently, a small fragment of Piccolo (Piccolino), arising due to the incomplete splicing of intron 5/6, was found to be present in the synapses of retinas and cochleae. However, the comprehensive function of Piccolo in the retina and cochlea remains unclear. In this study, we generated Piccolo knockout mice using CRISPR-Cas9 technology to explore the function of Piccolo. Unexpectedly, whereas no abnormalities were found in the cochlear hair cells of the mutant mice, significant differences were found in the retinas, in which two layers (the outer nuclear layer and the outer plexiform layer) were absent. Additionally, the amplitudes of electroretinograms were significantly reduced and pigmentation was observed in the fundoscopy of the mutant mouse retinas. The expression levels of Bassoon, a homolog of Piccolo, as well as synapse-associated proteins CtBP1, CtBP2, Kif3A, and Rim1 were down-regulated. The numbers of ribbon synapses in the retinas of the mutant mice were also reduced. Altogether, the phenotype of Piccolo-/- mice resembled the symptoms of retinitis pigmentosa (RP) in humans, suggesting Piccolo might be a candidate gene of RP and indicates Piccolo knockout mice are a good model for elucidating the molecular mechanisms of RP.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Células Ciliadas Auditivas/metabolismo , Neuropéptidos/metabolismo , Retina/patología , Retinitis Pigmentosa/genética , Animales , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Femenino , Células Ciliadas Auditivas/citología , Humanos , Intrones/genética , Masculino , Ratones , Ratones Noqueados , Neuropéptidos/genética , Empalme del ARN , Retina/citología , Retinitis Pigmentosa/patología , Sinapsis/metabolismo
19.
Biochem Biophys Res Commun ; 548: 7-13, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33631677

RESUMEN

Lipocalin family members, LCN8 and LCN9, are specifically expressed in the initial segment of mouse caput epididymis. However, the biological functions of the molecules in vivo are yet to be clarified. In this study, CRISPR/Cas9 technology was used to generate Lcn8 and Lcn9 knockout mice, respectively. Lcn8-/- and Lcn9-/- male mice showed normal spermatogenesis and fertility. In the cauda epididymis of Lcn8-/- male mice, morphologically abnormal sperm was increased significantly, the proportion of progressive motility sperm was decreased, the proportion of immobilized sperm was elevated, and the sperm spontaneous acrosome reaction (AR) frequency was increased. Conversely, the knockout of Lcn9 did not have any effect on the ratio of morphologically abnormal sperm, sperm motility, and sperm spontaneous AR frequencies. These results demonstrated the role of LCN8 in maintaining the sperm quality in the epididymis, and suggested that the deficiency of LCN8 leads to epididymal sperm maturation defects.


Asunto(s)
Epidídimo/patología , Lipocalinas/metabolismo , Maduración del Esperma/fisiología , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Fertilidad , Masculino , Ratones Endogámicos C57BL , Espermatogénesis , Espermatozoides
20.
Exp Cell Res ; 395(1): 112178, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679235

RESUMEN

Cdc14a is an evolutionarily conserved dual-specific protein phosphatase, and it plays different roles in different organisms. Cdc14a mutations in human have been reported to cause male infertility, while the specific role of Cdc14a in regulation of the male reproductive system remains elusive. In the present study, we established a knockout mouse model to study the function of Cdc14a in male reproductive system. Cdc14a-/- male mice were subfertile and they could only produce very few offspring. The number of sperm was decreased, the sperm motility was impaired, and the proportion of sperm with abnormal morphology was elevated in Cdc14a-/- mice. When we mated Cdc14a-/- male mice with wild-type (WT) female mice, fertilized eggs could be found in female fallopian tubes, however, the majority of these embryos died during development. Some empty spaces were observed in seminiferous tubule of Cdc14a-/- testes. Compared with WT male mice, the proportions of pachytene spermatocytes were increased and germ cells stained with γH2ax were decreased in Cdc14a-/- male mice, indicating that knockout of Cdc14a inhibited meiotic initiation. Subsequently, we analyzed the expression levels of some substrate proteins of Cdc14a, including Cdc25a, Wee1, and PR-Set7, and compared those with WT testes, in which the expression levels of these proteins were significantly increased in Cdc14a-/- testes. Our results revealed that Cdc14a-/- male mice are highly subfertile, and Cdc14a is essential for normal spermatogenesis and sperm function.


Asunto(s)
Infertilidad Masculina/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Maduración del Esperma/fisiología , Motilidad Espermática/fisiología , Animales , Infertilidad Masculina/genética , Infertilidad Masculina/fisiopatología , Masculino , Ratones Noqueados , Espermatocitos/metabolismo , Espermatogénesis/genética , Espermatozoides/citología , Testículo/metabolismo , Testículo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...