Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(4): e14717, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38641945

RESUMEN

BACKGROUND: Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS: First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS: Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS: Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Glioma , MicroARNs , Humanos , Multiómica , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas B-raf , Epilepsia/genética , Epilepsia/complicaciones , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/genética , Glioma/complicaciones , Glioma/genética , Convulsiones/etiología , Biomarcadores
2.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284812

RESUMEN

Quartz tuning forks and qPlus-based force sensors offer an alternative approach to silicon cantilevers for investigating tip-sample interactions in scanning probe microscopy. The high-quality factor (Q) and stiffness of these sensors prevent the tip from jumping to the contact, even at sub-nanometer amplitude. The qPlus configuration enables simultaneous scanning tunneling microscopy and atomic force microscopy, achieving spatial resolution and spectroscopy at the subatomic level. However, to enable precise measurement of tip-sample interaction forces, confidence in these measurements is contingent upon the accurate calibration of the spring constant and oscillation amplitude of the sensor. Here, we have developed a method called astigmatic displacement microscopy with picometer sensitivity.

3.
Ecotoxicol Environ Saf ; 268: 115726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992646

RESUMEN

Exposure to metal mixtures may affect children's health but the conclusions are controversial. We aimed to investigate the associations of metal mixture exposure with children's physical and behavioral development. 15 metals were detected in the urine samples of 278 preschoolers aged 3-6 years from eastern China. Multiple linear models and restricted cubic splines were used to evaluate dose-response relationships between single metal and children's physical and behavioral development. The Bayesian Kernel Machine Regression (BKMR) models, the weighted quantile sum (WQS) models and Quantile G-Computation were applied to evaluate the joint effects of metal mixtures. The results showed that arsenic (As) was negatively associated with z score of height for age (HAZ) in individual-metal models [ß (95%CI): - 0.22 (-0.38, -0.06), P = 0.006]. Concerning children's behavioral development, multiple-metal models demonstrated a negative association with strontium (Sr) [ß (95%CI): - 0.82 (-1.38, -0.26), P = 0.004], and a positive association with tin (Sn) [ß (95%CI): 0.69 (0.16, 1.21), P = 0.010]. Notably, these associations remained significant or suggestive even after adjustments for multiple tests, sensitivity analyses, and application of different statistical models, including BKMR, WQS, and Quantile G-Computation. Furthermore, the study identified a negative joint effect of the metal mixture on HAZ, as demonstrated by BKMR and Quantile G-Computation models, with As playing an irreplaceable role in this observed impact. In summary, exposure to As appears to have adverse effects on HAZ, while exposure to Sn may hinder children's behavioral development. Conversely, exposure to Sr may have a protective effect on children's behavioral development. Additionally, the combined impact of metal mixtures is implicated in potentially impairing children's physical development, particularly in terms of HAZ.


Asunto(s)
Arsénico , Exposición a Riesgos Ambientales , Humanos , Niño , Preescolar , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Monitoreo Biológico , Teorema de Bayes , Metales/toxicidad , Metales/análisis , Arsénico/toxicidad , Arsénico/análisis , Estroncio/análisis , China
4.
J Med Virol ; 95(9): e29084, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721443

RESUMEN

Hepatocellular carcinoma (HCC) accounts for 80% of liver cancers, while 70%-80% of HCC developed from chronic liver disease with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection as the major etiology. Immunotherapy is assuming a role as a pillar of HCC treatment, but the remarkable immune-mediated responses are restricted in a minority of patients. Nucleic acid sensing (NAS) pathways are the central pathway of the innate immune system and antiviral immune response to viral infection, but their role in hepatitis virus-related HCC remains undetermined. In our study, we performed a comprehensive bioinformatics analysis based on transcriptomic data of hepatitis virus related-HCC tissues collected from multiple public data sets. Two subgroups were validated based on NAS-related genes in virus-related HCC patients, which were defined as NAS-activated subgroups and NAS-suppressed subgroups based on the expression of NAS-related genes. On this basis, a NAS-related risk score (NASRS) predictive model was established for risk stratification and prognosis prediction in the hepatitis virus-related HCC (TCGA-LIHC and ICGC cohorts). The predictive values of the NASRS in prognosis and immunotherapy were also verified in multiple data sets. A nomogram was also established to facilitate the clinical use of NASRS and demonstrate its effectiveness through different approaches. Additionally, six potential drugs binding to the core target of the NAS signature were predicted via molecular docking strategy. We subsequently evaluated the cytotoxic capabilities of potential drug in vitro and in vivo. Based on these results, we conclude that the NASRS model could serve as a power prognostic biomarker and predict responses to immunotherapy, which is meaningful in clinical decision-making of hepatitis virus-related HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis A , Hepatitis C , Neoplasias Hepáticas , Virosis , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Simulación del Acoplamiento Molecular , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Inmunoterapia , Hepacivirus
5.
Front Aging Neurosci ; 15: 1230467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680538

RESUMEN

Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37592781

RESUMEN

BACKGROUND: As a novel pillar for lung adenocarcinoma (LUAD) treatment, immunotherapy has limited efficiency in LUAD patients. The nucleic acid sensing (NAS) pathways are critical in the anti-tumor immune response, but their role in LUAD remains controversial. OBJECTIVE: The study aims to develop a classification system to identify immune subtypes of LUAD based on nucleic acid sensing-related genes so that it can help screen patients who may respond to immunotherapy. METHODS: We performed a comprehensive bioinformatics analysis of the NAS molecule expression profiles across multiple public datasets. Using qRT-PCR to verify the NAS genes in multiple lung cancer cell lines. Molecular docking was performed to screen drug candidates. RESULTS: The NAS-activated subgroup and NAS-suppressed subgroup were validated based on the different patterns of gene expression and pathways enrichment. The NAS-activated subgroup displayed a stronger immune infiltration and better prognosis of patients. Moreover, we constructed a seven nucleic acid sensing-related risk score (NASRS) model for the convenience of clinical application. The predictive values of NASRS in prognosis and immunotherapy were subsequently fully validated in the lung adenocarcinoma dataset and the uroepithelial carcinoma dataset. Additionally, five potential drugs binding to the core target of the NAS signature were predicted through molecular docking. CONCLUSION: We found a significant correlation between nucleic acid sensing function and the immune treatment efficiency in LUAD. The NASRS can be used as a robust biomarker for the predicting of prognosis and immunotherapy efficiency and may help in clinical decisions for LUAD patients.

8.
Dig Dis Sci ; 68(9): 3660-3670, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452979

RESUMEN

BACKGROUND AND AIMS: Obesity may be a risk factor for severe acute pancreatitis (SAP). However, its precise mechanism is not yet fully understood. METHODS: We fed rats with a standard laboratory diet (SLD) and a high-fat diet (HFD). SAP model rats were established by retrograde injection of sodium taurocholate. Serum non-esterified fatty acids (NEFAs), lipase (LPS), and myeloperoxidase (MPO) were measured, as were adipose IL-1, IL-6, IL-10, and TNF-α levels. HE staining was performed to determine the severity of pancreatitis. Serum exosomes were extracted from rats with obesity-related SAP, verified by transmission electron microscopy (TEM) and western blot analysis, and co-cultured with THP-1 cells. Flow cytometry was used to analyze the M1 and M2 phenotypes of macrophages in adipose tissues and THP-1 cells. Q-PCR was used to analyze the levels of IL-1, IL-6, IL-10, and TNF-α in each group of cells. RESULTS: The body weight and serum NEFA concentrations of rats in the HFD group were significantly higher than those in the SLD group. Adipose tissue macrophages in the HFD group exhibited a higher percentage of the M1 type than those in the SLD group. The severity of pancreatitis were significantly increased in the HFD + SAP group. Pro-inflammatory macrophages and cytokines were significantly higher in the HFD + SAP group and THP-1 cells co-cultured with serum exosomes extracted from rats with obesity-related SAP. CONCLUSIONS: Obesity might worsen the severity of pancreatitis by amplifying the immune response and activating M1 polarization in adipose tissue macrophages via serum exosomes in rats of obesity-related SAP. In our study, we isolated exosomes from the serum of mice with obesity-related SAP. After inducing THP-1 cells to become M0-typed macrophages, we co-cultured the cells with exosomes and observed that exosomes from obesity-related SAP increased the proportion of M1-typed macrophages and promoted the release of pro-inflammatory factors such as IL-1, IL-6, and TNF. Therefore, obesity might worsen the severity of pancreatitis by amplifying the immune response and activating M1 polarization in adipose tissue macrophages via serum exosomes in rats of obesity-related SAP.


Asunto(s)
Exosomas , Pancreatitis , Ratas , Ratones , Animales , Pancreatitis/genética , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Enfermedad Aguda , Macrófagos , Obesidad/complicaciones , Tejido Adiposo , Interleucina-1
9.
Biochem Biophys Res Commun ; 670: 109-116, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37290285

RESUMEN

OBJECTIVES: Investigate the role of the Hippo-YAP signaling pathway in radioresistant Nasopharyngeal Carcinoma (NPC). METHODS: Establishment of radioresistant CNE-1 cells (CNE-1-RR) by gradually increasing ionizing radiation (IR) doses, and identifying the apoptosis of CNE-1-RR by flow cytometry. We employed immunoblot and immunofluorescence staining to detect the expression of YAP in both CNE-1-RR and control group cells. Moreover, we validated the role of YAP in CNE-1-RR by inhibiting its nuclear translocation. RESULTS: In contrast to the control group, radioresistant NPC cells demonstrated significant YAP dephosphorylation and nuclear translocation. CNE-1-RR cells exhibited enhanced activation of γ-H2AX (Ser139) upon exposure to IR and greater recruitment of double-strand breaks (DSBs) repair-related proteins. Additionally, inhibiting YAP nuclear translocation in radioresistant CNE-1-RR cells significantly increased their sensitivity to radiotherapy. CONCLUSIONS: The present investigation has unveiled the intricate mechanisms and physiological roles of YAP in CNE-1-RR cells exhibiting resistance to IR. Based on our findings, it can be inferred that a combinational therapeutic strategy involving radiotherapy and inhibitors that impede the nuclear translocation of YAP holds promising potential for treating radioresistant NPC.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Proteínas Señalizadoras YAP , Humanos , Apoptosis , Carcinoma/radioterapia , Carcinoma/patología , Línea Celular Tumoral , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/metabolismo , Tolerancia a Radiación , Proteínas Señalizadoras YAP/metabolismo
10.
Oral Dis ; 29(5): 2027-2033, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35500146

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the prognostic factors and treatment of primary intraosseous carcinoma (PIOC). METHODS: Patients diagnosed with POIC and received treatment in Sichuan Cancer Hospital from 2000 to 2019 were followed up and retrospectively reviewed. RESULTS: A total of 28 patients were included in the study, with a mean age of 60 years (60 ± 10.11). The 2-year and 5-year overall survival (OS) were 60.7% and 38.5%, respectively. In the univariate analysis, surgery combined with adjuvant therapy improved the OS compared with surgery or radiotherapy alone (p = 0.035), and patients who received postoperative adjuvant radiotherapy had a higher OS than those who received radical radiotherapy (p = 0.01). In addition, patients with well-differentiated tumors have increased progression-free survival (p = 0.01). Multivariate analyses showed that radiotherapy was an independent indicator for OS (p = 0.007). CONCLUSIONS: Surgery combined with adjuvant therapy is the superior treatment strategy for PIOC at present. This study is the first to confirm the positive role of radiotherapy in treating PIOC with data to back it up.


Asunto(s)
Carcinoma , Humanos , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Terapia Combinada , Radioterapia Adyuvante , Estadificación de Neoplasias , Resultado del Tratamiento
11.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884613

RESUMEN

Attribution of specific roles to the two ubiquitously expressed PI 3-kinase (PI3K) isoforms p110α and p110ß in biological functions they have been implicated, such as in insulin signalling, has been challenging. While p110α has been demonstrated to be the principal isoform activated downstream of the insulin receptor, several studies have provided evidence for a role of p110ß. Here we have used isoform-selective inhibitors to estimate the relative contribution of each of these isoforms in insulin signalling in adipocytes, which are a cell type with essential roles in regulation of metabolism at the systemic level. Consistent with previous genetic and pharmacological studies, we found that p110α is the principal isoform activated downstream of the insulin receptor under physiological conditions. p110α interaction with Ras enhanced the strength of p110α activation by insulin. However, this interaction did not account for the selectivity for p110α over p110ß in insulin signalling. We also demonstrate that p110α is the principal isoform activated downstream of the ß-adrenergic receptor (ß-AR), another important signalling pathway in metabolic regulation, through a mechanism involving activation of the cAMP effector molecule EPAC1. This study offers further insights in the role of PI3K isoforms in the regulation of energy metabolism with implications for the therapeutic application of selective inhibitors of these isoforms.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase I/genética , AMP Cíclico/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/genética , Receptor de Insulina/genética , Receptores Adrenérgicos beta/genética , Transducción de Señal
12.
Front Mol Biosci ; 8: 614443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386518

RESUMEN

The emergence of novel coronavirus mutants is a main factor behind the deterioration of the epidemic situation. Further studies into the pathogenicity of these mutants are thus urgently needed. Binding of the spinous protein receptor binding domain (RBD) of SARS-CoV-2 to the angiotensin-converting enzyme 2 (ACE2) receptor was shown to initiate coronavirus entry into host cells and lead to their infection. The receptor-binding motif (RBM, 438-506) is a region that directly interacts with ACE2 receptor in the RBD and plays a crucial role in determining affinity. To unravel how mutations in the non-RBM regions impact the interaction between RBD and ACE2, we selected three non-RBM mutant systems (N354D, D364Y, and V367F) from the documented clinical cases, and the Q498A mutant system located in the RBM region served as the control. Molecular dynamics simulation was conducted on the mutant systems and the wild-type (WT) system, and verified experiments also performed. Non-RBM mutations have been shown not only to change conformation of the RBM region but also to significantly influence its hydrogen bonding and hydrophobic interactions. In particular, the D364Y and V367F systems showed a higher affinity for ACE2 owing to their electrostatic interactions and polar solvation energy changes. In addition, although the binding free energy at this point increased after the mutation of N354D, the conformation of the random coil (Pro384-Asp389) was looser than that of other systems, and the combined effect weakened the binding free energy between RBD and ACE2. Interestingly, we also found a random coil (Ala475-Gly485). This random coil is very sensitive to mutations, and both types of mutations increase the binding free energy of residues in this region. We found that the binding loop (Tyr495-Tyr505) in the RBD domain strongly binds to Lys353, an important residue of the ACE2 domain previously identified. The binding free energy of the non-RBM mutant group at the binding loop had positive and negative changes, and these changes were more obvious than that of the Q498A system. The results of this study elucidate the effect of non-RBM mutation on ACE2-RBD binding, and provide new insights for SARS-CoV-2 mutation research.

13.
Artículo en Inglés | MEDLINE | ID: mdl-27057202

RESUMEN

Aims. Ilexonin A (IA), a component of the Chinese medicine Ilex pubescens, has been shown to be neuroprotective during ischemic injury. However, the specific mechanism underlying this neuroprotective effect remains unclear. Methods. In this study, we employed a combination of immunofluorescence staining, western blotting, RT-PCR, and behavioral tests, to investigate the molecular mechanisms involved in IA regulation of neuronal proliferation and regeneration after cerebral ischemia and reperfusion in rodents. Results. Increases in ß-catenin protein and LEF1 mRNA and decreases in GSK3ß protein and Axin mRNA observed in IA-treated compared to control rodents implicated the canonical Wnt pathway as a key signaling mechanism activated by IA treatment. Furthermore, rodents in the IA treatment group showed less neurologic impairment and a corresponding increase in the number of Brdu/nestin and Brdu/NeuN double positive neurons in the parenchymal ischemia tissue following middle cerebral artery occlusion compared to matched controls. Conclusion. Altogether, our data indicate that IA can significantly diminish neurological deficits associated with cerebral ischemia reperfusion in rats as a result of increased neuronal survival via modulation of the canonical Wnt pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...