Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38639621

RESUMEN

Objective: To evaluate the optimal duration of thumb cupping therapy for frozen shoulder (FS) by thermal metabolic imaging (TMI) and to provide clinical evidence. Methods: From April 2022 to August 2023, 120 patients with FS who received thumb cupping therapy at our hospital were randomized into groups A, B, and C for 5, 10, and 15 minutes of cupping, respectively. The clinical efficacy, Visual Analogue Scale (VAS) score, and shoulder range of motion (ROM) of the three groups were compared, and the skin blood flow and the incidence of adverse reactions during treatment were analyzed. Finally, the temperature difference improvement efficiency (i.e., higher TMI after treatment than before treatment) was compared among the three groups. Results: Groups B and C showed higher overall clinical efficacy than group A (P < .05). After treatment, lower VAS scores were determined in groups B and C compared with group A, whereas the ROM values of groups A and C were smaller than those of group B Group C had the greatest skin blood flow and the highest incidence of adverse reactions (P < .05), while group B had the highest temperature difference improvement efficiency (P < .05). Conclusions: Through TMI, it is confirmed that thumb cupping therapy with a duration of 10 min contributes to the highest efficacy and safety for patients with FS.

2.
Molecules ; 27(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558075

RESUMEN

During drilling in deep shale gas reservoirs, drilling fluid losses, hole wall collapses, and additional problems occur frequently due to the development of natural fractures in the shale formation, resulting in a high number of engineering accidents such as drilling fluid leaks, sticking, mud packings, and buried drilling tools. Moreover, the horizontal section of horizontal well is long (about 1500 m), and the problems of friction, rock carrying, and reservoir pollution are extremely prominent. The performance of drilling fluids directly affects drilling efficiency, the rate of engineering accidents, and the reservoir protection effect. In order to overcome the problems of high filtration in deep shale formations, collapse of borehole walls, sticking of pipes, mud inclusions, etc., optimization studies of water-based drilling fluid systems have been conducted with the primary purpose of controlling the rheology and water loss of drilling fluid. The experimental evaluation of the adsorption characteristics of "KCl + polyamine" anti-collapse inhibitor on the surface of clay particles and its influence on the morphology of bentonite was carried out, and the mechanism of inhibiting clay mineral hydration expansion was discussed. The idea of controlling the rheology and water loss of drilling fluid with high temperature resistant modified starch and strengthening the inhibition performance of drilling fluid with "KCl + polyamine" was put forward, and a high temperature-resistant modified starch polyamine anti-sloughing drilling fluid system with stable performance and strong plugging and strong inhibition was optimized. The temperature resistance of the optimized water-based drilling fluid system can reach 180 °C. Applied to on-site drilling of deep shale gas horizontal wells, it effectively reduces the rate of complex accidents such as sticking, mud bagging, and reaming that occur when resistance is encountered during shale formation drilling. The time for a single well to trip when encountering resistance decreases from 2-3 d in the early stages to 3-10 h. The re-use rate of the second spudded slurry is 100 percent, significantly reducing the rate of complex drilling accidents and saving drilling costs. It firmly supports the optimal and rapid construction of deep shale gas horizontal wells.


Asunto(s)
Gas Natural , Agua , Temperatura , Arcilla , Minerales , Almidón
3.
Dose Response ; 18(4): 1559325820942718, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343265

RESUMEN

We explored whether long noncoding RNA growth arrest-specific transcript 5 (LncRNA-GAS5) small interfering RNA (siRNA) reduced cartilage destruction in obese mice with adjuvant-induced arthritis. We studied the effects of LncRNA-GAS5 siRNA on the polyarthritis index; hind paw swelling; and the serum levels of certain biochemicals, cytokines, and oxidative stress parameters. We measured the expression levels of matrix metalloproteinases (MMP)-13, NF-κB, fibroblast growth factor (FGF) 21, p38, Akt, and PI3K in cartilage via Western blotting and quantitative reverse transcription PCR. Long noncoding RNA-GAS5 siRNA reduced joint swelling; the serum levels of arthritis-associated biochemicals, cytokines, and oxidative stress markers; and cartilage MMP-13, NF-κB, FGF21, p38, Akt, and PI3K levels. Cartilage miR-103 expression was reduced. Histopathologically, LncRNA-GAS5 siRNA ameliorated the pathological changes of cartilage. Long noncoding RNA-GAS5 siRNA prevented cartilage destruction by inhibiting miR-103 expression.

4.
Exp Ther Med ; 19(5): 3203-3210, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32266016

RESUMEN

MicroRNA (miR)-106b-5p has been reported to act as both an oncogene and tumor suppressor in several tumors. The aim of the present study was to investigate the biological function of miR-106b-5p in osteosarcoma (OS). miR-106b-5p expression was observed to be significantly increased in OS tissues and cell lines. MTT assay and flow cytometry analysis determined that miR-106b-5p inhibitor transfection suppressed OS cell proliferation and induced cell cycle G0/G1 phase arrest. Furthermore, bioinformatics analysis and a luciferase reporter assay demonstrated that cyclin-dependent kinase inhibitor 1A (CDKN1A) was a potential target of miR-106b-5p. p21 protein expression was found to be significantly increased by miR-106b-5p downregulation in OS cells. Further analysis demonstrated that CDKN1A was downregulated in OS tissues and was negatively correlated with miR-106b-5p expression. Furthermore, upregulation of CDKN1A expression mimicked, whilst CDKN1A knockdown reversed the suppressive effects of miR-106b-5p inhibitor on OS cell proliferation and cell cycle progression. In summary, the present data suggested that miR-106b-5p promotes cell proliferation and cell cycle progression by directly targeting CDKN1A in OS.

5.
EXCLI J ; 17: 102-112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29743851

RESUMEN

MicroRNAs (miRNAs) have been widely reported to have important regulatory roles in various human tumors, including osteosarcoma (OS). The aim of this study was to focus on the role of less well-known miRNA-567 (miR-567) in OS. We found the expression of miR-567 was significantly reduced in OS tissues and cell lines (MG-63, U2OS and Saos-2) compared with the adjacent normal tissues and normal osteoblastic cells (hFOB), respectively. Moreover, exogenous miR-567 overexpression inhibited OS cell proliferation, migration and invasion by CCK-8, Transwell assays, respectively. We further explored the mechanism underlying the suppressive effects of miR-567 on OS cells and identified a potential target of miR-567 binds to the 3'UTR of fibroblast growth factor 5 (FGF5) using TargetScan program. Furthermore, enforced expression of miR-567 decreased the expression of FGF5 in both MG-63 and U2OS cells using luciferase reporter assay and Western blotting. We also showed that overexpression of FGF5 could partially antagonize the suppressive effects of miR-567 on OS cell proliferation, migration and invasion. Taken together, our data indicated that miR-567 may function as a tumor suppressor by negatively regulating FGF5 and be potential therapeutic targets for the treatment of OS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...