Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Surg ; 24(1): 150, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745222

RESUMEN

PURPOSE: To investigate whether the mixed approach is a safe and advantageous way to operate laparoscopic right hemicolectomy. METHODS: A retrospective study was performed on 316 patients who underwent laparoscopic right hemicolectomy in our center. They were assigned to the middle approach group (n = 158) and the mixed approach group (n = 158) according to the surgical approaches. The baseline data like gender、age and body mass index as well as the intraoperative and postoperative conditions including operation time, blood loss, postoperative hospital stay and complications were analyzed. RESULTS: There were no significant differences in age, sex, BMI, ASA grade and tumor characteristics between the two groups. Compared with the middle approach group, the mixed approach group was significantly lower in terms of operation time (217.61 min vs 154.31 min, p < 0.001), intraoperative blood loss (73.8 ml vs 37.97 ml, p < 0.001) and postoperative drainage volume. There was no significant difference in the postoperative complications like postoperative anastomotic leakage, postoperative infection and postoperative intestinal obstruction. CONCLUSIONS: Compared with the middle approach, the mixed approach is a safe and advantageous way that can significantly shorten the operation time, reduce intraoperative bleeding and postoperative drainage volume, and does not prolong the length of hospital stay or increase the morbidity postoperative complications.


Asunto(s)
Colectomía , Neoplasias del Colon , Laparoscopía , Tempo Operativo , Complicaciones Posoperatorias , Humanos , Estudios Retrospectivos , Colectomía/métodos , Masculino , Femenino , Laparoscopía/métodos , Neoplasias del Colon/cirugía , Persona de Mediana Edad , Anciano , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Tiempo de Internación/estadística & datos numéricos , Resultado del Tratamiento , Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Adulto
3.
Structure ; 32(4): 440-452.e4, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38340732

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.


Asunto(s)
Microcistinas , Péptido Sintasas , Péptido Sintasas/química , Conformación Molecular , Péptidos
4.
Nucleic Acids Res ; 52(1): 404-419, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38000383

RESUMEN

The bacterial ribonuclease RNase E plays a key role in RNA metabolism. Yet, with a large substrate spectrum and poor substrate specificity, its activity must be well controlled under different conditions. Only a few regulators of RNase E are known, limiting our understanding on posttranscriptional regulatory mechanisms in bacteria. Here we show that, RebA, a protein universally present in cyanobacteria, interacts with RNase E in the cyanobacterium Anabaena PCC 7120. Distinct from those known regulators of RNase E, RebA interacts with the catalytic region of RNase E, and suppresses the cleavage activities of RNase E for all tested substrates. Consistent with the inhibitory function of RebA on RNase E, depletion of RNase E and overproduction of RebA caused formation of elongated cells, whereas the absence of RebA and overproduction of RNase E resulted in a shorter-cell phenotype. We further showed that the morphological changes caused by altered levels of RNase E or RebA are dependent on their physical interaction. The action of RebA represents a new mechanism, potentially conserved in cyanobacteria, for RNase E regulation. Our findings provide insights into the regulation and the function of RNase E, and demonstrate the importance of balanced RNA metabolism in bacteria.


Asunto(s)
Anabaena , Endorribonucleasas , Anabaena/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6021-6029, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114208

RESUMEN

Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Filogenia , Plantas Medicinales/química , Medicina Tradicional China , Fenotipo
6.
Mol Microbiol ; 120(5): 740-753, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37804047

RESUMEN

The filamentous cyanobacterium Anabaena sp. PCC 7120 is able to form heterocysts for nitrogen fixation. Heterocyst differentiation is initiated by combined-nitrogen deprivation, followed by the commitment step during which the developmental process becomes irreversible. Mature heterocysts are terminally differentiated cells unable to divide, and cell division is required for heterocyst differentiation. Previously, we have shown that the HetF protease regulates cell division and heterocyst differentiation by cleaving PatU3, which is an inhibitor for both events. When hetF is required during the developmental program remains unknown. Here, by controlling the timing of hetF expression during heterocyst differentiation, we provide evidence that hetF is required just before the beginning of heterocyst morphogenesis. Consistent with this finding, transcriptome data show that most of the genes known to be involved in the early step (such as hetR and ntcA) or the commitment step (such as hetP and hetZ) of heterocyst development could be expressed in the ΔhetF mutant. In contrast, most of the genes involved in heterocyst morphogenesis and nitrogen fixation remain repressed in the mutant. These results indicated that in the absence of hetF, heterocyst differentiation is able to be initiated and proceeds to the stage just before heterocyst envelope formation.


Asunto(s)
Anabaena , Cianobacterias , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Cianobacterias/metabolismo , Diferenciación Celular
7.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4942-4949, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802835

RESUMEN

Root rot is a microbial disease that is difficult to control and can result in serious losses in the planting of most Chinese medicinal materials. As high as 87.6% of roots or rhizomes of Chinese medicinal materials are susceptible to root rot, which seriously affects the cultivation development of Chinese medicinal materials. Trichoderma fungi, possessing biological control functions, can induce plants to improve their resistance to microbial diseases, promote plant growth, and effectively reduce the losses caused by various microbial diseases on cultivation. At present, Trichoderma is rarely used in the cultivation of Chinese medicinal materials, so it has great application potential for the prevention and control of root rot diseases in farmed Chinese medicinal materials. Based on the above situation, after comparison and discussion, it is believed that compared with chemical control and physical control, biological control of root rot diseases of Chinese medicinal materials is more efficient and meets the development needs of Chinese medicinal materials ecological planting in China. This paper reviewed the progress in the research and application of Trichoderma in the control of root rot diseases in the root and rhizome of farmed Chinese medicinal materials in the past 10 years and found that most of the current research on the biological control of root rot diseases in Chinese medicinal materials was mostly limited to the verification of the inhibitory effect of Trichoderma strains on the growth of the pathogenic microbes. Studies on the induction effect of Trichoderma on Chinese medicinal materials are not in depth. Studies on the responding mechanisms of most Chinese medicinal materials to Trichoderma are highly absent. Moreover, there are few reports on field experiments, which indicates that there is a long way to go before Trichoderma is widely applied in the farming practice of Chinese medicinal materials. To sum up, this paper aimed to link the present and the future and advocated further relevant research and more experiments on the application of Trichoderma in the farming of Chinese medicinal materials.


Asunto(s)
Trichoderma , Agricultura , Granjas , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Rizoma
8.
Commun Biol ; 6(1): 643, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322092

RESUMEN

Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog ß-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.


Asunto(s)
Anabaena , Cianobacterias , Proteínas Bacterianas/metabolismo , Anabaena/genética , Anabaena/metabolismo , Cianobacterias/genética , Factores de Transcripción/metabolismo , Operón , ARN de Transferencia/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2896-2903, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381971

RESUMEN

A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.


Asunto(s)
Plantas Medicinales , Agricultura , Biotecnología , Fitomejoramiento , Plantas Medicinales/genética
10.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1186-1193, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005802

RESUMEN

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Asunto(s)
Plantas Medicinales , Desarrollo Sostenible , Plantas Medicinales/genética , Fitomejoramiento , Medicina Tradicional China , Tecnología
11.
Proc Natl Acad Sci U S A ; 120(13): e2221874120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36947515

RESUMEN

Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule. It is also a critical player in the regulation of cell size and cell behaviors such as cell aggregation and phototaxis in cyanobacteria, which constitute an important group of prokaryotes for their roles in the ecology and evolution of the Earth. However, c-di-GMP receptors have never been revealed in cyanobacteria. Here, we report the identification of a c-di-GMP receptor, CdgR, from the filamentous cyanobacterium Anabaena PCC 7120. Crystal structural analysis and genetic studies demonstrate that CdgR binds c-di-GMP at the dimer interface and this binding is required for the control of cell size in a c-di-GMP-dependent manner. Different functions of CdgR, in ligand binding and signal transmission, could be separated genetically, allowing us to dissect its molecular signaling functions. The presence of the apo-form of CdgR triggers cell size reduction, consistent with the similar effects observed with a decrease of c-di-GMP levels in cells. Furthermore, we found that CdgR exerts its function by interacting with a global transcription factor DevH, and this interaction was inhibited by c-di-GMP. The lethal effect triggered by conditional depletion of DevH or by the production of several point-mutant proteins of CdgR in cells indicates that this signaling pathway plays critical functions in Anabaena. Our studies revealed a mechanism of c-di-GMP signaling in the control of cell size, an important and complex trait for bacteria. CdgR is highly conserved in cyanobacteria, which will greatly expand our understanding of the roles of c-di-GMP signaling in these organisms.


Asunto(s)
Cianobacterias , Transducción de Señal , Cianobacterias/metabolismo , GMP Cíclico/metabolismo , Regulación de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
12.
PNAS Nexus ; 2(2): pgac307, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36743469

RESUMEN

Bacterial cells mostly divide symmetrically. In the filamentous, multicellular cyanobacterium Anabaena, cell-division planes are aligned vertically relative to the long axis of every single cell. This observation suggests that both the placement and the angle of the division planes are controlled in every single cell so that the filament can grow in one single dimension along the long axis. In this study, we showed that inactivation of patU3 encoding a cell-division inhibitor led cells to divide asymmetrically in two dimensions leading to twisted filaments, indicating that PatU3 controls not only the position but also the angle of the division planes. Deletion of the conserved minC and minD genes affected cell division symmetry, but not the angle of the division planes. Remarkably, when both patU3 and minCD were inactivated, cells could divide asymmetrically over 360° angles in three dimensions across different cellular sections, producing not only cells with irregular sizes, but also branching filaments. This study demonstrated the existence of a system operating in a three-dimensional manner for the control of cell division in Anabaena. Such a regulation may have been evolved to accommodate multicellular behaviors, a hallmark in evolution.

13.
Microbiol Spectr ; 11(1): e0422822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36625639

RESUMEN

Each bacterial species possesses a specific cell size and morphology, which constitute important and recognizable physical traits. How bacteria maintain their particular cell size and morphology remains an essential question in microbiology. Cyanobacteria are oxygen-evolving photosynthetic prokaryotes. Although monophyletic, these organisms are highly diverse in their cell morphology and cell size. How these physical traits of cyanobacteria are controlled is poorly understood. Here, we report the identification of a two-component signaling system, composed of a histidine kinase CdgK and a response regulator CdgS, involved in cell size regulation in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Inactivation of cdgK or cdgS led to reduction of cell length and width with little effect on cell growth capacity. CdgS has a GGDEF domain responsible for the synthesis of the second messenger c-di-GMP. Based on genetic and biochemical studies, we proposed a signaling pathway initiated by CdgK, leading to the phosphorylation of CdgS, and thereby an enhanced enzymatic activity for c-di-GMP synthesis of the latter. The GGDEF domain of CdgS was essential in cell size control, and the reduction of cell size observed in various mutants could be rescued by the expression of a c-di-GMP synthetase from E. coli. These results provided evidence that a minimal threshold of c-di-GMP level was required for maintaining cell size in Anabaena. IMPORTANCE Cyanobacteria are considered the first organisms to produce oxygen on Earth, and their activities shaped the evolution of our ecosystems. Cell size is an important trait fixed early in evolution, with the diversification of micro- and macrocyanobacterial species during the Great Oxidation Event. However, the genetic basis underlying cell size control in cyanobacteria was not understood. Our studies demonstrated that the CdgK-CdgS signaling pathway participates in the control of cell size, and their absence did not affect cell growth. CdgK has multiple domains susceptible to signal input, which are necessary for cell size regulation. This observation suggests that cell size in Anabaena could respond to environmental signals. These studies paved the way for genetic dissection of cell size regulation in cyanobacteria.


Asunto(s)
Anabaena , Cianobacterias , Escherichia coli/metabolismo , Ecosistema , Transducción de Señal , Anabaena/genética , Anabaena/metabolismo , Tamaño de la Célula , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
14.
Proc Natl Acad Sci U S A ; 119(36): e2207963119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037363

RESUMEN

The filamentous, multicellular cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a prokaryotic model for the study of cell differentiation and cell-cell interactions. Upon combined-nitrogen deprivation, Anabaena forms a particular cell type, heterocyst, for aerobic nitrogen fixation. Heterocysts are semiregularly spaced among vegetative cells. Heterocyst differentiation is coupled to cell division, but the underlying mechanism remains unclear. This mechanism could be mediated by the putative protease HetF, which is a divisome component and is necessary for heterocyst differentiation. In this study, by suppressor screening, we identified PatU3, as a negative regulator acting downstream of HetF for cell division and heterocyst development. The inactivation of patU3 restored the capacity of cell division and heterocyst differentiation in the ΔhetF mutant, and overexpression of patU3 inhibited both processes in the wild-type background. We demonstrated that PatU3 was a specific substrate of the protease activity of HetF. Consequently, PatU3 accumulated in the hetF-deficient mutant, which was responsible for the resultant mutant phenotype. The cleavage site of PatU3 by HetF was mapped after the Arg117 residue, whose mutation made PatU3 resistant to HetF processing, and mimicked the effect of hetF deletion. Our results provided evidence that HetF regulated cell division and heterocyst differentiation by controlling the inhibitory effects of PatU3. This proteolytic pathway constituted a mechanism for the coordination between cell division and differentiation in a prokaryotic model used for studies on developmental biology and multicellularity.


Asunto(s)
Anabaena , Proteínas Bacterianas , División Celular , Proteolisis , Anabaena/citología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
15.
Annu Rev Microbiol ; 76: 597-618, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671534

RESUMEN

Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation.


Asunto(s)
Anabaena , Cianobacterias , Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Fijación del Nitrógeno
16.
Aquat Toxicol ; 245: 106121, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35180454

RESUMEN

Cyanobacteria are oxygen-evolving photosynthetic autotrophs essential for nutrient cycling in the environment. They possess multiple control mechanisms for their cellular activities in order to adapt to the environment. While protein translation is essential for cell survival and adaptation, the regulation and the flexibility of this process are poorly understood in cyanobacteria. ß-N-methylamino-L-alanine (BMAA), an amino acid analog proposed as an environmental neurotoxin, is highly toxic to the filamentous diazotrophic cyanobacterium Anabaena PCC 7120. In this study, through genetic analysis of BMAA-resistant mutants, we demonstrate that the system responsible for modification of ANN-decoding tRNAs with N(6)-threonylcarbamoyl adenosine (t6A) is involved in BMAA sensitivity through the control of translation. Both BMAA and inactivation of the t6A biosynthesis pathway affect translational fidelity and ribosome assembly. However, the two factors display either additive effects on translational elongation, or attenuate each other over translational fidelity or the resistance/sensitivity to antibiotics that inhibit different steps of the translational process. BMAA has a broad effect on translation and transcription, and once BMAA enters the cells, the presence of the t6A biosynthesis pathway increases the sensitivity of the cells towards this toxin. BMAA-resistant mutants screening is an effective method for getting insight into the toxic mechanisms of BMAA. In addition, BMAA is a useful tool for probing translational flexibility of cyanobacteria, and the characterization of the corresponding resistant mutants should help us to reveal translational mechanism allowing cyanobacteria to adapt to changing environments.


Asunto(s)
Aminoácidos Diaminos , Anabaena , Cianobacterias , Contaminantes Químicos del Agua , Adenosina/análogos & derivados , Aminoácidos Diaminos/toxicidad , Anabaena/genética , Anabaena/metabolismo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Neurotoxinas/metabolismo , ARN de Transferencia/metabolismo , Contaminantes Químicos del Agua/toxicidad
17.
Methods Mol Biol ; 2377: 143-157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34709615

RESUMEN

Cyanobacteria, a group of diverse bacteria capable of oxygenic photosynthesis, are excellent models for investigating many important cellular processes, such as photosynthesis, nitrogen fixation, and prokaryotic cell differentiation. They also have great potential to become the next-generation cell factories for sustainable biosynthesis of valuable products. However, genetic manipulation in cyanobacteria is not as convenient as in other model bacteria. Particularly, handling essential genes in cyanobacteria has been difficult due to the lack of appropriate tools, limiting our understanding of many important cellular functions encoded by them. We recently develop a CRISPR-based method for constructing the conditional mutants of cyanobacterial essential genes by engineering the ribosome binding site to a theophylline-responsive riboswitch. Here, we provide the details of this method. The principle of this method could be used to construct conditional mutants in a wide range of bacterial species.


Asunto(s)
Cianobacterias , Genes Esenciales , Sistemas CRISPR-Cas , Cianobacterias/genética , Mutación , Fijación del Nitrógeno , Fotosíntesis
18.
Front Microbiol ; 12: 793336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925302

RESUMEN

c-di-GMP is a ubiquitous bacterial signal regulating various physiological process. Anabaena PCC 7120 (Anabaena) is a filamentous cyanobacterium able to form regularly-spaced heterocysts for nitrogen fixation, in response to combined-nitrogen deprivation in 24h. Anabaena possesses 16 genes encoding proteins for c-di-GMP metabolism, and their functions are poorly characterized, except all2874 (cdgS) whose deletion causes a decrease in heterocyst frequency 48h after nitrogen starvation. We demonstrated here that c-di-GMP levels increased significantly in Anabaena after combined-nitrogen starvation. By inactivating each of the 16 genes, we found that the deletion of all1175 (cdgSH) led to an increase of heterocyst frequency 24h after nitrogen stepdown. A double mutant ΔcdgSHΔcdgS had an additive effect over the single mutants in regulating heterocyst frequency, indicating that the two genes acted at different time points for heterocyst spacing. Biochemical and genetic data further showed that the functions of CdgSH and CdgS in the setup or maintenance of heterocyst frequency depended on their opposing effects on the intracellular levels of c-di-GMP. Finally, we demonstrated that heterocyst differentiation was completely inhibited when c-di-GMP levels became too high or too low. Together, these results indicate that the homeostasis of c-di-GMP level is important for heterocyst differentiation in Anabaena.

19.
Front Microbiol ; 12: 765878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745074

RESUMEN

Bacterial cell shape is determined by the peptidoglycan (PG) layer. The cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a filamentous strain with ovoid-shaped cells connected together with incomplete cell constriction. When deprived of combined nitrogen in the growth medium, about 5-10% of the cells differentiate into heterocysts, cells devoted to nitrogen fixation. It has been shown that PG synthesis is modulated during heterocyst development and some penicillin-binding proteins (PBPs) participating in PG synthesis are required for heterocyst morphogenesis or functioning. Anabaena has multiple PBPs with functional redundancy. In this study, in order to examine the function of PG synthesis and its relationship with heterocyst development, we created a conditional mutant of mraY, a gene necessary for the synthesis of the PG precursor, lipid I. We show that mraY is required for cell and filament integrity. Furthermore, when mraY expression was being limited, persistent septal PG synthetic activity was observed, resulting in increase in cell width. Under non-permissive conditions, filaments and cells were rapidly lysed, and no sign of heterocyst development within the time window allowed was detected after nitrogen starvation. When mraY expression was being limited, a high percentage of heterocyst doublets were found. These doublets are formed likely as a consequence of delayed cell division and persistent septal PG synthesis. MraY interacts with components of both the elongasome and the divisome, in particular those directly involved in PG synthesis, including HetF, which is required for both cell division and heterocyst formation.

20.
mBio ; 12(4): e0138221, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34253066

RESUMEN

Bacterial cell division, with a few exceptions, is driven by FtsZ through a treadmilling mechanism to remodel and constrict the rigid peptidoglycan (PG) layer. Yet different organisms may differ in the composition of the cell division complex (divisome). In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, hetF is required for the initiation of the differentiation of heterocysts, cells specialized in N2 fixation under combined-nitrogen deprivation. In this study, we demonstrate that hetF is expressed in vegetative cells and necessary for cell division under certain conditions. Under nonpermissive conditions, cells of a ΔhetF mutant stop dividing, consistent with increased levels of HetF under similar conditions in the wild type. Furthermore, HetF is a membrane protein located at midcell and cell-cell junctions. In the absence of HetF, FtsZ rings are still present in the elongated cells; however, PG remodeling is abolished. This phenotype is similar to that observed with the inhibition of the septal PG synthase FtsI. We further reveal that HetF is recruited to or stabilized at the divisome by interacting with FtsI and that this interaction is necessary for HetF function in cell division. Our results indicate that HetF is a member of the divisome depending mainly on light intensity and reveal distinct features of the cell division machinery in cyanobacteria that are of high ecological and environmental importance. IMPORTANCE Cyanobacteria shaped the Earth's evolutionary history and are still playing important roles for elementary cycles in different environments. They consist of highly diverse species with different cell shapes, sizes, and morphologies. Although these properties are strongly affected by the process of cytokinesis, the mechanism remains largely unexplored. Using different approaches, we demonstrate that HetF is a new component of the cell division machinery under certain environmental conditions in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. The common and diverged characteristics of cell division in prokaryotes reflect the evolutionary history of different bacteria as an adaptive measure to proliferate under certain environmental conditions. As a protein for cell differentiation, the recruitment of HetF to the septum illustrates such an adaptive mechanism in cyanobacteria.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/genética , Anabaena/química , Proteínas Bacterianas/genética , División Celular/fisiología , Regulación Bacteriana de la Expresión Génica , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...