Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732079

RESUMEN

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Mitofagia , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Animales , Ratas , Ritmo Circadiano/fisiología , Masculino , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Simulación de Ingravidez , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Temperatura Corporal , Frecuencia Cardíaca , Ratas Sprague-Dawley , Proteolisis
2.
iScience ; 27(6): 109917, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38812544

RESUMEN

During space travel, microgravity leads to disturbances in cognitive function, while the underlying mechanism is still unclear. Simulated microgravity mice showed neuronal age-like changes in the hippocampus of our study. In the context of microgravity, we discovered m6A modification reshapes in the hippocampal region. When paired with RNA-seq and MeRIP-seq, Shox2 was found to be a powerful regulator in hippocampal neuron that respondes to microgravity. Decreased expression of senescence-associated secretory phenotype factors and improved genes related to synapses led to the restoration of memory function in the hippocampus upon increased expression of Shox2. Moreover, we discovered that IGF2BP2 was required for the m6A modification of the Shox2, and overexpressed IGF2BP2 in the hippocampus protected against both neuronal senescence and learning and memory decline caused by loss of gravity. Accordingly, our research identified the hippocampal IGF2BP2-Shox2 axis as a possible therapeutic approach to maintaining cognitive function during space travel.

3.
Transl Oncol ; 45: 101987, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38743986

RESUMEN

BACKGROUND: Bevacizumab resistance poses barriers to targeted therapy in clear cell renal cell carcinoma (ccRCC). Whether there exist epigenetic targets that modulate bevacizumab sensitivity in ccRCC remains indefinite. The focus of this study is to explore the role of UCHL1 in ccRCC. METHODS: Both in vitro and in vivo experiments were utilized to investigate the roles of UCHL1 in ccRCC. In vivo ubiquitination assays were performed to validate the posttranslational modification of KDM4B by UCHL1. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to explore KDM4B/VEGFA epigenetic regulations. RESULTS: UCHL1 was increased in ccRCC and associated with unfavorable survival outcomes in patients. UCHL1 was required for ccRCC growth and migration. Mechanistically, the wild-type UCHL1, but not C90A mutant, mediated the deubiquitination of KDM4B and thereby stabilized its proteins. KDM4B was up-regulated in ccRCC and potentiated cell growth. UCHL1 depended on KDM4B to augment ccRCC malignancies. Targeting UCHL1 suppressed tumor growth, colony formation, and migration abilities, which could be rescued by KDM4B. Furthermore, KDM4B was directly bound to the promoter region of VEGFA, abolishing repressive H3K9me3 modifications. KDM4B coordinated with HIF2α to activate VEGFA transcriptional levels. UCHL1-KDM4B axis governs VEGFA levels to sustain the angiogenesis phenotypes. Finally, a specific small-molecule inhibitor (6RK73) targeting UCHL1 remarkably inhibited ccRCC progression and further sensitized ccRCC to bevacizumab treatment. CONCLUSION: Overall, this study defined an epigenetic mechanism of UCHL1/KDM4B in activating VEGF signaling. The UCHL1-KDM4B axis represents a novel target for treating ccRCC and improving the efficacy of anti-angiogenesis therapy.

4.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561649

RESUMEN

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Asunto(s)
Antioxidantes , Cynodon , Cynodon/fisiología , Antioxidantes/metabolismo , Sequías , Fitomejoramiento , Fotosíntesis/genética , Agua/metabolismo , Expresión Génica
5.
Int Immunopharmacol ; 132: 111983, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593504

RESUMEN

Developing biomimetic nanoparticles without off-target side-effects remains a major challenge in spinal cord injury (SCI) immunotherapy. In this paper, we have conducted a drug carrier which is biocompatible macrophages-exocytosed exosome-biomimetic manganese (Mn)-iron prussian blue analogues (MPBs) for SCI immunotherapy. Exosome-sheathed MPBs (E-MPBs) exhibit promoted microglia accumulation, alleviation from H2O2-induced microenvironment and inhibition of apoptosis and inflammation in vitro. In addition, E-MPBs possessed significant tissue repair and neuroprotection in vivo. These properties endowed E-MPBs with great improvement in vivo in function recovery, resulting in anti-neuroinflammation activity and excellent biocompatibility in mice SCI model. As a promising treatment for efficient SCI immunotherapy, these results demonstrate the use of exosome-sheathed biomimetic nanoparticles exocytosed by anti-inflammation cells is feasible.


Asunto(s)
Exosomas , Inmunoterapia , Macrófagos , Nanopartículas , Traumatismos de la Médula Espinal , Animales , Exosomas/trasplante , Exosomas/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/inmunología , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones , Nanopartículas/química , Inmunoterapia/métodos , Ferrocianuros/química , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humanos , Microglía/inmunología , Células RAW 264.7 , Apoptosis/efectos de los fármacos
6.
PeerJ ; 12: e17222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650654

RESUMEN

Targeting tumor angiogenesis is an important approach in advanced tumor therapy. Here we investigated the effect of the suppressor of variegation 3-9 homolog 1 (SUV39H1) on tumor angiogenesis in oral squamous cell carcinoma (OSCC). The GEPIA database was used to analyze the expression of SUV39H1 in various cancer tissues. The expression of SUV39H1 in OSCC was detected by immunohistochemistry, and the correlation between SUV39H1 and Notch1 and microvascular density (MVD) was analyzed. The effect of SUV39H1 inhibition on OSCC was investigated in vivo by chaetocin treatment. The migration and tube formation of vascular endothelial cells by conditioned culture-medium of different treatments of oral squamous cell cells were measured. The transcriptional level of SUV39H1 is elevated in various cancer tissues. The transcription level of SUV39H1 in head and neck squamous cell carcinoma was significantly higher than that in control. Immunohistochemistry result showed increased SUV39H1 expression in OSCC, which was significantly correlated with T staging. The expression of SUV39H1 was significantly correlated with Notch1 and CD31. In vivo experiment chaetocin treatment significantly inhibit the growth of tumor, and reduce SUV39H1, Notch1, CD31 expression. The decreased expression of SUV39H1 in OSCC cells lead to the decreased expression of Notch1 and VEGF proteins, as well as the decreased migration and tube formation ability of vascular endothelial cells. Inhibition of Notch1 further enhance this effect. Our results suggest inhibition of SUV39H1 may affect angiogenesis by regulating Notch1 expression. This study provides a foundation for SUV39H1 as a potential therapeutic target for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Metiltransferasas , Neoplasias de la Boca , Neovascularización Patológica , Receptor Notch1 , Proteínas Represoras , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/irrigación sanguínea , Neovascularización Patológica/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Animales , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/irrigación sanguínea , Línea Celular Tumoral , Ratones , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Angiogénesis
7.
Cell Metab ; 36(4): 778-792.e10, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38378000

RESUMEN

Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-ß) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-ß+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-ß+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Pericitos/metabolismo , Carcinoma de Células Renales/patología , Metionina/metabolismo , Racemetionina/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Neoplasias Renales/patología , Células Madre Neoplásicas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo
8.
Front Plant Sci ; 14: 1320980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259918

RESUMEN

Botryosphaeria dothidea infects hundreds of woody plants and causes a severe economic loss to apple production. In this study, we characterized BdLM1, a protein from B. dothidea that contains one LysM domain. BdLM1 expression was dramatically induced at 6 h post-inoculation in wounded apple fruit, strongly increased at 7 d post-inoculation (dpi), and peaked at 20 dpi in intact shoots. The knockout mutants of BdLM1 had significantly reduced virulence on intact apple shoots (20%), wounded apple shoots (40%), and wounded apple fruit (40%). BdLM1 suppressed programmed cell death caused by the mouse protein BAX through Agrobacterium-mediated transient expression in Nicotiana benthamiana, reduced H2O2 accumulation and callose deposition, downregulated resistance gene expression, and promoted Phytophthora nicotianae infection in N. benthamiana. Moreover, BdLM1 inhibited the active oxygen burst induced by chitin and flg22, bound chitin, and protected fungal hyphae against degradation by hydrolytic enzymes. Taken together, our results indicate that BdLM1 is an essential LysM effector required for the full virulence of B. dothidea and that it inhibits plant immunity. Moreover, BdLM1 could inhibit chitin-triggered plant immunity through a dual role, i.e., binding chitin and protecting fungal hyphae against chitinase hydrolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA